Modeling of Biaxial Compression Behavior of Carbon Fiber-Reinforced Composite after Low-Velocity Impact

被引:4
|
作者
Yang, Bin [1 ]
Fu, Kunkun [1 ]
Li, Yan [1 ]
机构
[1] Tongji Univ, Sch Aerosp Engn & Appl Mech, Shanghai 200092, Peoples R China
基金
中国博士后科学基金;
关键词
Carbon fiber-reinforced composite (CFRC); Biaxial compression; Compression after impact (CAI) strength; Finite element (FE); GROWTH PHENOMENA; DAMAGE; FAILURE; PANELS; DELAMINATION; SIMULATION; CRITERION; EVOLUTION; LAMINATE; TENSILE;
D O I
10.1061/(ASCE)AS.1943-5525.0001417
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This study presents a finite-element (FE) model considering intralaminar damage and interlaminar delamination to predict the biaxial compression behavior of carbon fiber-reinforced composites (CFRCs) with low-velocity impact damage. First, the FE model was validated by a uniaxial compression experiment. The FE predictions in terms of compression after impact (CAI) strength and failure patterns were consistent with the experimental results. Then the validated FE model was used to predict the biaxial compression behavior of the CFRCs. It was found that the residual strength of the CFRCs was dependent on the buckling mode of the laminate due to the coupling effect of the longitudinal and transverse compressive loadings. Correspondingly, the CAI strength under biaxial compression was lower than that under longitudinal or transverse compressive loading.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] On multiple low-velocity impact response and compression after impact of composite laminates
    Hu, Peng
    Jian, Yue'ao
    Hu, Cheng
    Zhang, Nan
    Wang, Xinwei
    Cai, Deng'an
    Zhou, Guangming
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2025, 32 (06) : 1043 - 1057
  • [32] Coupled Analysis of Low-Velocity Impact Damage and Compression after Impact Strength of Composite Laminates
    Borkowski, Luke B.
    Kumar, Rajesh S.
    Palliyaguru, Upul R.
    JOURNAL OF AEROSPACE ENGINEERING, 2021, 34 (05)
  • [33] Effect of stacking sequence on the double-point low velocity impact response and compression-after-impact behavior of glass fiber-reinforced composite laminates
    Li, Hao
    Liu, Kun
    Tao, Zhen
    Yu, Zhaogang
    Ye, Liqing
    Xiao, Wenkang
    POLYMER COMPOSITES, 2025,
  • [34] Low-velocity impact predictions of composite laminates using a continuum shell based modeling approach Part b: BVID impact and compression after impact
    Thorsson, Solver I.
    Waas, Anthony M.
    Rassaian, Mostafa
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2018, 155 : 201 - 212
  • [35] Low-velocity impact behavior of fiber metal laminates
    Tsartsaris, N.
    Meo, M.
    Dolce, F.
    Polimeno, U.
    Guida, M.
    Marulo, F.
    JOURNAL OF COMPOSITE MATERIALS, 2011, 45 (07) : 803 - 814
  • [36] Study of equi-energetic effects on the low-velocity impact and compression after impact response of carbon fiber composite tube structures
    Mack, Jason P.
    Tan, K. T.
    COMPOSITES PART B-ENGINEERING, 2025, 291
  • [37] Research on low-velocity impact resistance of carbon fiber composite laminates
    Hou, Xin
    Aymerich, Francecso
    Feng, Dianshi
    POLYMER COMPOSITES, 2024, 45 (07) : 6125 - 6141
  • [38] Fracture mechanism of carbon fiber-reinforced thermoplastic composite laminates under compression after impact
    Nagumo, Yoshiko
    Hamanaka, Miyu
    Shirasu, Keiichi
    Ryuzono, Kazuki
    Yoshimura, Akinori
    Tohmyoh, Hironori
    Okabe, Tomonaga
    JOURNAL OF COMPOSITE MATERIALS, 2024, 58 (11) : 1377 - 1390
  • [39] Low-velocity impact and compression after impact modeling of composites using modified mesoscale model
    Rajaneesh, A.
    Bruyneel, M.
    COMPOSITE STRUCTURES, 2023, 311
  • [40] Energy Absorption of Carbon-Fiber-Reinforced Composite Laminates Under Low-Velocity Impacts
    Sun, H.
    Li, F.
    Shen, K.
    Li, K.
    MECHANICS OF COMPOSITE MATERIALS, 2020, 56 (03) : 389 - 396