Data Augmentation for Graph Convolutional Network on Semi-supervised Classification

被引:6
|
作者
Tang, Zhengzheng [1 ,2 ]
Qiao, Ziyue [1 ,2 ]
Hong, Xuehai [1 ,3 ]
Wang, Yang [2 ]
Dharejo, Fayaz Ali [1 ,2 ]
Zhou, Yuanchun [2 ]
Du, Yi [2 ]
机构
[1] Chinese Acad Sci, Comp Network Informat Ctr, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
来源
WEB AND BIG DATA, APWEB-WAIM 2021, PT II | 2021年 / 12859卷
基金
北京市自然科学基金;
关键词
Data augmentation; Graph Convolutional Network; Semi-supervised classification;
D O I
10.1007/978-3-030-85899-5_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data augmentation aims to generate new and synthetic features from the original data, which can identify a better representation of data and improve the performance and generalizability of downstream tasks. However, data augmentation for graph-based models remains a challenging problem, as graph data is more complex than traditional data, which consists of two features with different properties: graph topology and node attributes. In this paper, we study the problem of graph data augmentation for Graph Convolutional Network (GCN) in the context of improving the node embeddings for semi-supervised node classification. Specifically, we conduct cosine similarity based cross operation on the original features to create new graph features, including new node attributes and new graph topologies, and we combine them as new pairwise inputs for specific GCNs. Then, we propose an attentional integrating model to weighted sum the hidden node embeddings encoded by these GCNs into the final node embeddings. We also conduct a disparity constraint on these hidden node embeddings when training to ensure that non-redundant information is captured from different features. Experimental results on five real-world datasets show that our method improves the classification accuracy with a clear margin (+2.5%-+84.2%) than the original GCN model.
引用
收藏
页码:33 / 48
页数:16
相关论文
共 50 条
  • [1] Heterogeneous graph convolutional network for multi-view semi-supervised classification
    Wang, Shiping
    Huang, Sujia
    Wu, Zhihao
    Liu, Rui
    Chen, Yong
    Zhang, Dell
    NEURAL NETWORKS, 2024, 178
  • [2] SEMI-SUPERVISED CERVICAL DYSPLASIA CLASSIFICATION WITH LEARNABLE GRAPH CONVOLUTIONAL NETWORK
    Ou, Yanglan
    Xue, Yuan
    Yuan, Ye
    Xu, Tao
    Pisztora, Vincent
    Li, Jia
    Huang, Xiaolei
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 1720 - 1724
  • [3] Hybrid Graph Convolutional Network for Semi-Supervised Retinal Image Classification
    Zhang, Guanghua
    Pan, Jing
    Zhang, Zhaoxia
    Zhang, Heng
    Xing, Changyuan
    Sun, Bin
    Li, Ming
    IEEE ACCESS, 2021, 9 : 35778 - 35789
  • [4] Information-controlled graph convolutional network for multi-view semi-supervised classification
    Shi, Yongquan
    Pi, Yueyang
    Liu, Zhanghui
    Zhao, Hong
    Wang, Shiping
    NEURAL NETWORKS, 2025, 184
  • [5] Dynamic Graph Learning Convolutional Networks for Semi-supervised Classification
    Fu, Sichao
    Liu, Weifeng
    Guan, Weili
    Zhou, Yicong
    Tao, Dapeng
    Xu, Changsheng
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2021, 17 (01)
  • [6] Adaptive graph convolutional collaboration networks for semi-supervised classification
    Fu, Sichao
    Wang, Senlin
    Liu, Weifeng
    Liu, Baodi
    Zhou, Bin
    You, Xinhua
    Peng, Qinmu
    Jing, Xiao-Yuan
    INFORMATION SCIENCES, 2022, 611 : 262 - 276
  • [7] NodeAug: Semi-Supervised Node Classification with Data Augmentation
    Wang, Yiwei
    Wang, Wei
    Liang, Yuxuan
    Cai, Yujun
    Liu, Juncheng
    Hooi, Bryan
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 207 - 217
  • [8] Geometric localized graph convolutional network for multi-view semi-supervised classification
    Huang, Aiping
    Lu, Jielong
    Wu, Zhihao
    Chen, Zhaoliang
    Chen, Yuhong
    Wang, Shiping
    Zhang, Hehong
    INFORMATION SCIENCES, 2024, 677
  • [9] Generative Essential Graph Convolutional Network for Multi-View Semi-Supervised Classification
    Lu, Jielong
    Wu, Zhihao
    Zhong, Luying
    Chen, Zhaoliang
    Zhao, Hong
    Wang, Shiping
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 7987 - 7999
  • [10] Heterogeneous graph contrastive learning with adaptive data augmentation for semi-supervised short text classification
    Wu, Mingqiang
    Xu, Zhuoming
    Zheng, Lei
    EXPERT SYSTEMS, 2025, 42 (02)