ITERATIVE METHODS FOR TRANSMISSION EIGENVALUES

被引:94
作者
Sun, Jiguang [1 ]
机构
[1] Delaware State Univ, Dept Math Sci, Dover, DE 19901 USA
关键词
transmission eigenvalues; inverse scattering; iterative method; finite element method; EXISTENCE; DERIVATIVES;
D O I
10.1137/100785478
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Transmission eigenvalues have important applications in inverse scattering theory. They can be used to obtain useful information of the physical properties, such as the index of refraction, of the scattering target. Despite considerable effort devoted to the existence and estimation for the transmission eigenvalues, the numerical treatment is limited. Since the problem is nonstandard, classical finite element methods result in non-Hermitian matrix eigenvalue problems. In this paper, we focus on the computation of a few lowest transmission eigenvalues which are of practical importance. Instead of a non-Hermitian problem, we work on a series of generalized Hermitian problems. We first use a fourth order reformulation of the transmission eigenproblem to construct functions involving an associated generalized eigenvalue problem. The roots of these functions are the transmission eigenvalues. Then we apply iterative methods to compute the transmission eigenvalues. We show the convergence of the numerical schemes. The effectiveness of the methods is demonstrated using various numerical examples.
引用
收藏
页码:1860 / 1874
页数:15
相关论文
共 17 条
[1]   DERIVATIVES OF EIGENVALUES AND EIGENVECTORS OF MATRIX FUNCTIONS [J].
ANDREW, AL ;
CHU, KWE ;
LANCASTER, P .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1993, 14 (04) :903-926
[2]  
Atkinson KE., 1989, INTRO NUMERICAL ANAL
[3]  
Babuska I., 1991, HDB NUMERICAL ANAL, V2
[4]   FURTHER ANALYSIS OF THE ARNOLDI PROCESS FOR EIGENVALUE PROBLEMS [J].
Bellalij, M. ;
Saad, Y. ;
Sadok, H. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (02) :393-407
[5]   The inverse electromagnetic scattering problem for anisotropic media [J].
Cakoni, Fioralba ;
Colton, David ;
Monk, Peter ;
Sun, Jiguang .
INVERSE PROBLEMS, 2010, 26 (07)
[6]   THE EXISTENCE OF AN INFINITE DISCRETE SET OF TRANSMISSION EIGENVALUES [J].
Cakoni, Fioralba ;
Gintides, Drossos ;
Haddar, Houssem .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (01) :237-255
[7]   Transmission eigenvalues and the nondestructive testing of dielectrics [J].
Cakoni, Fioralba ;
Cayoeren, Mehmet ;
Colton, David .
INVERSE PROBLEMS, 2008, 24 (06)
[8]   On the existence of transmission eigenvalues in an inhomogeneous medium [J].
Cakoni, Fioralba ;
Haddar, Houssem .
APPLICABLE ANALYSIS, 2009, 88 (04) :475-493
[9]  
Ciarlet P.G., 2002, FINITE ELEMENT METHO, V40
[10]  
Colton D., 1998, INVERSE ACOUSTIC ELE