Rapid Tempering: Opportunities and Challenges

被引:15
作者
Euser, V. K. [1 ,2 ]
Clarke, A. J. [2 ]
Speer, J. G. [2 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Colorado Sch Mines, Golden, CO 80401 USA
关键词
dynamic; heat treatment; impact toughness; mechanical; rapid tempering; steel; tempered martensite; tempered martensite embrittlement; MARTENSITE EMBRITTLEMENT; RETAINED AUSTENITE; CARBON; MECHANISMS; REFINEMENT; CEMENTITE; STRENGTH; STEEL;
D O I
10.1007/s11665-020-04946-z
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Rapid tempering involves shorter times and faster heating rates compared to conventional tempering. Utilizing rapid tempering via industrial processes, such as induction heating, not only offers the opportunity for improved mechanical properties, but also for reduced processing times and energy costs. The current study demonstrates an improvement in toughness with rapid tempering by examining impact toughness at a constant tempering parameter for short-time (1 s) and conventional (3600 s) tempering treatments of 4340 steel. Fracture behavior is found to complement the observed toughness behavior, where higher impact energy conditions are associated with a greater percentage of ductile fracture. The role of the Hollomon-Jaffe tempering parameter, as well as the use of hardness as a metric to characterize degree of tempering, is discussed in light of the results comparing rapid and conventional tempering conditions. This study indicates promising mechanical properties associated with short-time tempering, especially within the tempered martensite embrittlement (TME) regime, and exposes challenges associated with predicting performance strictly based on hardness when rapid tempering is utilized.
引用
收藏
页码:4155 / 4161
页数:7
相关论文
共 28 条
  • [1] [Anonymous], 2018, E14012B2019C1 ASTM
  • [2] [Anonymous], 2011, Practice, P1, DOI [DOI 10.1520/E0562-11, 10.1520/E0562-11., 10.1520/EO562-11, DOI 10.1520/E0562-11.2]
  • [3] [Anonymous], 2018, E13906 ASTM, DOI [10.1520/E0139-11R18, DOI 10.1520/E0139-11R18]
  • [4] THE MICROMECHANISMS OF TEMPERED MARTENSITE EMBRITTLEMENT IN 4340-TYPE STEELS
    BANDYOPADHYAY, N
    MCMAHON, CJ
    [J]. METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1983, 14 (07): : 1313 - 1325
  • [5] Bhadeshia H. K. D. H., 1979, Metal Science, V13, P325
  • [6] Effects of Short-Time Tempering on Impact Toughness, Strength, and Phase Evolution of 4340 Steel Within the Tempered Martensite Embrittlement Regime
    Euser, V. K.
    Williamson, D. L.
    Clarke, K. D.
    Findley, K. O.
    Speer, J. G.
    Clarke, A. J.
    [J]. METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2019, 50A (08): : 3654 - 3662
  • [7] Control of cementite precipitation in lath martensite by rapid heating and tempering
    Furuhara, T
    Kobayashi, K
    Maki, T
    [J]. ISIJ INTERNATIONAL, 2004, 44 (11) : 1937 - 1944
  • [8] HARDNESS OF TEMPERED MARTENSITE IN CARBON AND LOW-ALLOY STEELS
    GRANGE, RA
    HRIBAL, CR
    PORTER, LF
    [J]. METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1977, 8 (11): : 1775 - 1785
  • [9] HOLLOMON JH, 1945, T AM I MIN MET ENG, V162, P223
  • [10] MECHANISMS OF TEMPERED MARTENSITE EMBRITTLEMENT IN LOW-ALLOY STEELS
    HORN, RM
    RITCHIE, RO
    [J]. METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1978, 9 (08): : 1039 - 1053