Structure and mechanism of bacterial dehalogenases: different ways to cleave a carbon-halogen bond

被引:77
作者
de Jong, RM [1 ]
Dijkstra, BW [1 ]
机构
[1] Univ Groningen, Groningen Biomol Sci & Biotechnol Inst, Dept Biophys Chem, NL-9747 AG Groningen, Netherlands
关键词
D O I
10.1016/j.sbi.2003.10.009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The dehalogenases make use of fundamentally different strategies to cleave carbon-halogen bonds. The structurally characterized haloalkane dehalogenases, haloacid dehalogenases and 4-chlorobenzoate-coenzyme A dehalogenases use substitution mechanisms that proceed via a covalent aspartyl intermediate. Recent X-ray crystallographic analysis of a haloalcohol dehalogenase and a trans-3-chloroacrylic acid dehalogenase has provided detailed insight into a different intramolecular substitution mechanism and a hydratase-like mechanism, respectively. The available information on the various dehalogenases supports different views on the possible evolutionary origins of their activities.
引用
收藏
页码:722 / 730
页数:9
相关论文
共 50 条
[1]   Dioxins in the environment: A review of trend data [J].
Alcock, RE ;
Jones, KC .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1996, 30 (11) :3133-3143
[2]   Pattern and sources of naturally produced organohalogens in the marine environment: biogenic formation of organohalogens [J].
Ballschmiter, K .
CHEMOSPHERE, 2003, 52 (02) :313-324
[3]   Structure of 4-chlorobenzoyl coenzyme A dehalogenase determined to 1.8 angstrom resolution: An enzyme catalyst generated via adaptive mutation [J].
Benning, MM ;
Taylor, KL ;
Liu, RQ ;
Yang, G ;
Xiang, H ;
Wesenberg, G ;
DunawayMariano, D ;
Holden, HM .
BIOCHEMISTRY, 1996, 35 (25) :8103-8109
[4]   Halide-stabilizing residues of haloalkane dehalogenases studied by quantum mechanic calculations and site-directed mutagenesis [J].
Bohac, M ;
Nagata, Y ;
Prokop, Z ;
Prokop, M ;
Monincová, M ;
Tsuda, M ;
Koca, J ;
Damborsky, J .
BIOCHEMISTRY, 2002, 41 (48) :14272-14280
[5]   Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium [J].
Bunge, M ;
Adrian, L ;
Kraus, A ;
Opel, M ;
Lorenz, WG ;
Andreesen, JR ;
Görisch, H ;
Lechner, U .
NATURE, 2003, 421 (6921) :357-360
[6]   The structural basis for the perturbed pKa of the catalytic base in 4-oxalocrotonate tautomerase:: Kinetic and structural effects of mutations of Phe-50 [J].
Czerwinski, RM ;
Harris, TK ;
Massiah, MA ;
Mildvan, AS ;
Whitman, CP .
BIOCHEMISTRY, 2001, 40 (07) :1984-1995
[7]   Structure and mechanism of a bacterial haloalcohol dehalogenase: a new variation of the short-chain dehydrogenase/reductase fold without an NAD(P)H binding site [J].
de Jong, RM ;
Tiesinga, JJW ;
Rozeboom, HJ ;
Kalk, KH ;
Tang, L ;
Janssen, DB ;
Dijkstra, BW .
EMBO JOURNAL, 2003, 22 (19) :4933-4944
[8]   Catalytic triads and their relatives [J].
Dodson, G ;
Wlodawer, A .
TRENDS IN BIOCHEMICAL SCIENCES, 1998, 23 (09) :347-352
[9]   Raman evidence for Meisenheimer complex formation in the hydrolysis reactions of 4-fluorobenzoyl- and 4-nitrobenzoyl-coenzyme a catalyzed by 4-chlorobenzoyl-coenzyme A dehalogenase [J].
Dong, J ;
Carey, PR ;
Wei, YS ;
Luo, LS ;
Lu, XF ;
Liu, RQ ;
Dunaway-Mariano, D .
BIOCHEMISTRY, 2002, 41 (23) :7453-7463
[10]   Critical residues for structure and catalysis in short-chain dehydrogenases/reductases [J].
Filling, C ;
Berndt, KD ;
Benach, J ;
Knapp, S ;
Prozorovski, T ;
Nordling, E ;
Ladenstein, R ;
Jörnvall, H ;
Oppermann, U .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (28) :25677-25684