Real-time filtering with sparse variations for head motion in magnetic resonance imaging

被引:2
|
作者
Weller, Daniel S. [1 ]
Noll, Douglas C. [2 ]
Fessler, Jeffrey A. [2 ]
机构
[1] Univ Virginia, Charlottesville, VA 22904 USA
[2] Univ Michigan, Ann Arbor, MI 48109 USA
基金
美国国家卫生研究院;
关键词
Image processing; Registration; Kalman filtering; Sparsity; Magnetic resonance imaging; MONTE-CARLO SURE; PARAMETER-ESTIMATION; NONLINEAR-SYSTEMS; STATE; ALGORITHM; MRI; REGULARIZATION; REGISTRATION; SIGNALS; FMRI;
D O I
10.1016/j.sigpro.2018.12.001
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Estimating a time-varying signal, such as head motion from magnetic resonance imaging data, becomes particularly challenging in the face of other temporal dynamics such as functional activation. This paper describes a new Kalman-filter-like framework that includes a sparse residual term in the measurement model. This additional term allows the extended Kalman filter to generate real-time motion estimates suitable for prospective motion correction when such dynamics occur. An iterative augmented Lagrangian algorithm similar to the alterating direction method of multipliers implements the update step for this Kalman filter. This paper evaluates the accuracy and convergence rate of this iterative method for small and large motion in terms of its sensitivity to parameter selection. The included experiment on a simulated functional magnetic resonance imaging acquisition demonstrates that the resulting method improves the maximum Youden's J index of the time series analysis by 2 - 3% versus retrospective motion correction, while the sensitivity index increases from 4.3 to 5.4 when combining prospective and retrospective correction. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:170 / 179
页数:10
相关论文
共 50 条
  • [1] Real-Time Magnetic Resonance Imaging
    Nayak, Krishna S.
    Lim, Yongwan
    Campbell-Washburn, Adrienne E.
    Steeden, Jennifer
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2022, 55 (01) : 81 - 99
  • [2] Flexible Sensor for Real-Time Monitoring of Motion Artifacts in Magnetic Resonance Imaging
    Hu, Yiran
    Han, Chengcheng
    Huo, Xiaoqing
    Cao, Xiaole
    Chen, Yongyang
    Cao, Zhi
    Xu, Yong
    Tao, Li
    Wu, Zhiyi
    ACS SENSORS, 2024, 9 (05): : 2614 - 2621
  • [3] Overcoming foetal motion using interactive real-time magnetic resonance imaging
    Brix, Lau
    Ringgaard, Steffen
    Sandager, Puk
    Petersen, Olav Bjorn
    Sorensen, Thomas Sangild
    Lundorf, Erik
    Stausbol-Gron, Brian
    CLINICAL PHYSIOLOGY AND FUNCTIONAL IMAGING, 2017, 37 (06) : 717 - 722
  • [4] Nomenclature for real-time magnetic resonance imaging
    Dietz, Bryson
    Fallone, B. Gino
    Wachowicz, Keith
    MAGNETIC RESONANCE IN MEDICINE, 2019, 81 (03) : 1483 - 1484
  • [5] Real-time functional magnetic resonance imaging
    Cohen, MS
    METHODS, 2001, 25 (02) : 201 - 220
  • [6] A real-time reconstruction system for magnetic resonance imaging
    Gmitro, AF
    Ehsani, AR
    Berchem, TA
    Snell, RJ
    MAGNETIC RESONANCE IN MEDICINE, 1996, 35 (05) : 734 - 740
  • [7] The future of real-time cardiac magnetic resonance imaging
    Nayak K.S.
    Hu B.S.
    Current Cardiology Reports, 2005, 7 (1) : 45 - 51
  • [8] REAL-TIME IMAGING BY MAGNETIC-RESONANCE TOMOGRAPHY
    MATTHAEI, D
    HAASE, A
    HENRICH, D
    DUHMKE, E
    DEUTSCHE MEDIZINISCHE WOCHENSCHRIFT, 1990, 115 (19) : 749 - 754
  • [9] Real-time intravascular magnetic resonance imaging system
    Hu, BS
    Scott, GC
    Meyer, CH
    Pauly, JM
    Nishimura, DG
    Macovski, A
    CIRCULATION, 1998, 98 (17) : 857 - 857
  • [10] REAL-TIME INTERACTIVE MAGNETIC-RESONANCE-IMAGING
    HOLSINGER, AE
    WRIGHT, RC
    RIEDERER, SJ
    FARZANEH, F
    GRIMM, RC
    MAIER, JK
    MAGNETIC RESONANCE IN MEDICINE, 1990, 14 (03) : 547 - 553