QATM: Quality-Aware Template Matching For Deep Learning

被引:58
作者
Cheng, Jiaxin [1 ]
Wu, Yue [1 ]
Abd-Almageed, Wael [1 ]
Natarajan, Premkumar [1 ]
机构
[1] USC Informat Sci Inst, Marina Del Rey, CA 90292 USA
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019) | 2019年
关键词
CHARACTER-RECOGNITION; FEATURE-EXTRACTION; VISUAL TRACKING; LOCALIZATION;
D O I
10.1109/CVPR.2019.01182
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Finding a template in a search image is one of the core problems many computer vision, such as semantic image semantic, image-to-GPS verification etc. We propose a novel quality-aware template matching method, QATM, which is not only used as a standalone template matching algorithm, but also a trainable layer that can be easily embedded into any deep neural network. Here, our quality can be interpreted as the distinctiveness of matching pairs. Specifically, we assess the quality of a matching pair using soft-ranking among all matching pairs, and thus different matching scenarios such as 1-to-1, I-to-many, and many-to-many will be all reflected to different values. Our extensive evaluation on classic template matching benchmarks and deep learning tasks demonstrate the effectiveness of QATM. It not only outperforms state-of-the-art template matching methods when used alone, but also largely improves existing deep network solutions.
引用
收藏
页码:11545 / 11554
页数:10
相关论文
共 39 条
[1]  
Adam A., 2006, IEEE C COMP VIS PATT, P798, DOI [DOI 10.1109/CVPR.2006.256, 10.1109/CVPR.2006.256]
[2]   A Complete Logo Detection/Recognition System for Document Images [J].
Alaei, Alireza ;
Delalandre, Mathieu .
2014 11TH IAPR INTERNATIONAL WORKSHOP ON DOCUMENT ANALYSIS SYSTEMS (DAS 2014), 2014, :324-328
[3]  
[Anonymous], 2005, PROC CVPR IEEE
[4]  
Arandjelovic R, 2018, IEEE T PATTERN ANAL, V40, P1437, DOI [10.1109/CVPR.2016.572, 10.1109/TPAMI.2017.2711011]
[5]   Exploiting Semantic Information and Deep Matching for Optical Flow [J].
Bai, Min ;
Luo, Wenjie ;
Kundu, Kaustav ;
Urtasun, Raquel .
COMPUTER VISION - ECCV 2016, PT VI, 2016, 9910 :154-170
[6]   Logo localization and recognition in natural images using homographic class graphs [J].
Boia, Raluca ;
Florea, Corneliu ;
Florea, Laura ;
Dogaru, Radu .
MACHINE VISION AND APPLICATIONS, 2016, 27 (02) :287-301
[7]   Automatic panoramic image stitching using invariant features [J].
Brown, Matthew ;
Lowe, David G. .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2007, 74 (01) :59-73
[8]  
Chang S.F., 2018, ARXIV180904157
[9]  
Cheng Jiaxing, 2018, P AS C COMP VIS
[10]  
Choy C.B., 2016, Advances in Neural Information Processing Systems, P2406