On the Lebesgue constant of Berrut's rational interpolant at equidistant nodes

被引:34
作者
Bos, Len [2 ]
De Marchi, Stefano [3 ]
Hormann, Kai [1 ]
机构
[1] Univ Lugano, Lugano, Switzerland
[2] Univ Verona, I-37100 Verona, Italy
[3] Univ Padua, I-35100 Padua, Italy
关键词
Rational interpolation; Lebesgue constant; Equidistant nodes;
D O I
10.1016/j.cam.2011.04.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well known that polynomial interpolation at equidistant nodes can give bad approximation results and that rational interpolation is a promising alternative in this setting. In this paper we confirm this observation by proving that the Lebesgue constant of Berrut's rational interpolant grows only logarithmically in the number of interpolation nodes. Moreover, the numerical results suggest that the Lebesgue constant behaves similarly for interpolation at Chebyshev as well as logarithmically distributed nodes. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:504 / 510
页数:7
相关论文
共 11 条
[1]   Lebesgue constant minimizing linear rational interpolation of continuous functions over the interval [J].
Berrut, JP ;
Mittelmann, HD .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1997, 33 (06) :77-86
[2]   RATIONAL FUNCTIONS FOR GUARANTEED AND EXPERIMENTALLY WELL-CONDITIONED GLOBAL INTERPOLATION [J].
BERRUT, JP .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1988, 15 (01) :1-16
[3]   LEBESGUE FUNCTION FOR POLYNOMIAL INTERPOLATION [J].
BRUTMAN, L .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :694-704
[4]  
Brutman L., 1997, Ann. Numer. Math, V4, P111
[5]   Weighted interpolation for equidistant nodes [J].
Carnicer, Jesus M. .
NUMERICAL ALGORITHMS, 2010, 55 (2-3) :223-232
[6]   Barycentric rational interpolation with no poles and high rates of approximation [J].
Floater, Michael S. ;
Hormann, Kai .
NUMERISCHE MATHEMATIK, 2007, 107 (02) :315-331
[7]  
Rivlin T.J, 1974, Functional Analysis and its Applications, P422, DOI 10.1007/BFb0063594
[8]  
Schonhage A, 1961, NUMER MATH, V3, P62, DOI DOI 10.1007/BF01386001
[9]  
Smith SJ, 2006, ANN MATH INFORM, V33, P109
[10]   2 RESULTS ON POLYNOMIAL INTERPOLATION IN EQUALLY SPACED POINTS [J].
TREFETHEN, LN ;
WEIDEMAN, JAC .
JOURNAL OF APPROXIMATION THEORY, 1991, 65 (03) :247-260