Impact of severe plastic deformation on microstructure and hydrogen storage of titanium-iron-manganese intermetallics

被引:64
作者
Edalati, Kaveh [1 ,2 ]
Matsuo, Motoaki [3 ]
Emami, Hoda [1 ]
Itano, Shota [4 ]
Alhamidi, Ali [5 ]
Staykov, Aleksandar [1 ]
Smith, David J. [6 ]
Orimo, Shin-ichi [3 ,7 ]
Akiba, Etsuo [1 ]
Horita, Zenji [1 ,2 ]
机构
[1] Kyushu Univ, WPI, Int Inst Carbon Neutral Energy Res WPI I2CNER, Fukuoka 8190395, Japan
[2] Kyushu Univ, Fac Engn, Dept Mat Sci & Engn, Fukuoka 8190395, Japan
[3] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan
[4] Kyushu Univ, Fac Engn, Dept Mech Engn, Fukuoka 8190395, Japan
[5] Sultan Ageng Tirtayasa Univ, Dept Met & Mat Engn, Fac Engn, Cilegon 42435, Indonesia
[6] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA
[7] Tohoku Univ, AIMR, Sendai, Miyagi 9808577, Japan
关键词
Nanostructured intermetallics; Metal hydrides; Activation; High-pressure torsion (HPT); Density functional theory (DFT); HIGH-PRESSURE TORSION; AUGMENTED-WAVE METHOD; MAGNESIUM; FETI; CAPABILITY; HYDRIDE; ALLOYS;
D O I
10.1016/j.scriptamat.2016.07.007
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
TiFe1-xMnx intermetallics (x = 0, 0.15 and 0.3) were severely deformed by high-pressure torsion (HPT) to enhance their activation and air resistivity for hydrogenation. While the as-cast ingots hardly absorbed hydrogen (TiFe(0.7)Mno(3) exhibited slow activation after an incubation period), the HPT-processed samples absorbed hydrogen quickly at room temperature even after air exposure. The improvement of hydrogen storage performance was due to the formation of lattice defects and amorphous regions, which act as channels for hydrogen diffusion. Rietveld analyses and first-principles calculations showed that Mn addition expands the lattice and reduces the hydride formation energy, and thus decreases the hydrogenation/activation pressure. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:108 / 111
页数:4
相关论文
共 34 条
[1]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[2]  
Edalati K., 2016, INT J HYDRO IN PRESS
[3]   New nanostructured phases with reversible hydrogen storage capability in immiscible magnesium-zirconium system produced by high-pressure torsion [J].
Edalati, Kaveh ;
Emami, Hoda ;
Ikeda, Yuji ;
Iwaoka, Hideaki ;
Tanaka, Isao ;
Akiba, Etsuo ;
Horita, Zenji .
ACTA MATERIALIA, 2016, 108 :293-303
[4]   High-pressure torsion of TiFe intermetallics for activation of hydrogen storage at room temperature with heterogeneous nanostructure [J].
Edalati, Kaveh ;
Matsuda, Junko ;
Iwaoka, Hideaki ;
Toh, Shoichi ;
Akiba, Etsuo ;
Horita, Zenji .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (11) :4622-4627
[5]   High-pressure torsion of pure magnesium: Evolution of mechanical properties, microstructures and hydrogen storage capacity with equivalent strain [J].
Edalati, Kaveh ;
Yamamoto, Akito ;
Horita, Zenji ;
Ishihara, Tatsumi .
SCRIPTA MATERIALIA, 2011, 64 (09) :880-883
[6]   ORTHORHOMBIC STRUCTURE OF GAMMA-TIFED-ALMOST-EQUAL-TO-2 [J].
FISCHER, P ;
SCHEFER, J ;
YVON, K ;
SCHLAPBACH, L ;
RIESTERER, T .
JOURNAL OF THE LESS-COMMON METALS, 1987, 129 :39-45
[7]  
Grill A., 2015, INT J HYDROGEN ENERG, V40, P16985
[8]   Nanostructured Mg based hydrogen storage bulk materials prepared by high pressure torsion consolidation of arc plasma evaporated ultrafine powders [J].
Grosdidier, T. ;
Fundenberger, J. J. ;
Zou, J. X. ;
Pan, Y. C. ;
Zeng, X. Q. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (47) :16985-16991
[9]   Significance of grain boundaries and stacking faults on hydrogen storage properties of Mg2Ni intermetallics processed by high-pressure torsion [J].
Hongo, Toshifumi ;
Edalati, Kaveh ;
Arita, Makoto ;
Matsuda, Junko ;
Akiba, Etsuo ;
Horita, Zenji .
ACTA MATERIALIA, 2015, 92 :46-54
[10]   Application of Severe Plastic Deformation Techniques to Magnesium for Enhanced Hydrogen Sorption Properties [J].
Huot, Jacques ;
Skryabina, Nataliya Ye ;
Fruchart, Daniel .
METALS, 2012, 2 (03) :329-343