A two-part mixed-effects model for analyzing longitudinal microbiome compositional data
被引:140
|
作者:
Chen, Eric Z.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Penn, Perelman Sch Med, Genom & Computat Biol Grad Grp, Philadelphia, PA 19104 USA
Univ Penn, Perelman Sch Med, Dept Biostat & Epidemiol, Philadelphia, PA 19104 USAUniv Penn, Perelman Sch Med, Genom & Computat Biol Grad Grp, Philadelphia, PA 19104 USA
Chen, Eric Z.
[1
,2
]
Li, Hongzhe
论文数: 0引用数: 0
h-index: 0
机构:
Univ Penn, Perelman Sch Med, Genom & Computat Biol Grad Grp, Philadelphia, PA 19104 USA
Univ Penn, Perelman Sch Med, Dept Biostat & Epidemiol, Philadelphia, PA 19104 USAUniv Penn, Perelman Sch Med, Genom & Computat Biol Grad Grp, Philadelphia, PA 19104 USA
Li, Hongzhe
[1
,2
]
机构:
[1] Univ Penn, Perelman Sch Med, Genom & Computat Biol Grad Grp, Philadelphia, PA 19104 USA
[2] Univ Penn, Perelman Sch Med, Dept Biostat & Epidemiol, Philadelphia, PA 19104 USA
GUT MICROBIOME;
METAGENOMICS;
PROGRESSION;
DYNAMICS;
DIET;
D O I:
10.1093/bioinformatics/btw308
中图分类号:
Q5 [生物化学];
学科分类号:
071010 ;
081704 ;
摘要:
Motivation: The human microbial communities are associated with many human diseases such as obesity, diabetes and inflammatory bowel disease. High-throughput sequencing technology has been widely used to quantify the microbial composition in order to understand its impacts on human health. Longitudinal measurements of microbial communities are commonly obtained in many microbiome studies. A key question in such microbiome studies is to identify the microbes that are associated with clinical outcomes or environmental factors. However, microbiome compositional data are highly skewed, bounded in [0,1), and often sparse with many zeros. In addition, the observations from repeated measures in longitudinal studies are correlated. A method that takes into account these features is needed for association analysis in longitudinal microbiome data. Results: In this paper, we propose a two-part zero-inflated Beta regression model with random effects (ZIBR) for testing the association between microbial abundance and clinical covariates for longitudinal microbiome data. The model includes a logistic regression component to model presence/absence of a microbe in the samples and a Beta regression component to model non-zero microbial abundance, where each component includes a random effect to account for the correlations among the repeated measurements on the same subject. Both simulation studies and the application to real microbiome data have shown that ZIBR model outperformed the previously used methods. The method provides a useful tool for identifying the relevant taxa based on longitudinal or repeated measures in microbiome research.
机构:
NCI, Div Canc Epidemiol & Genet, Biostat Branch, Rockville, MD 20850 USANCI, Div Canc Epidemiol & Genet, Biostat Branch, Rockville, MD 20850 USA
Han, Yongli
Baker, Courtney
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Biostat, Chapel Hill, NC 27515 USANCI, Div Canc Epidemiol & Genet, Biostat Branch, Rockville, MD 20850 USA
Baker, Courtney
论文数: 引用数:
h-index:
机构:
Vogtmann, Emily
Hua, Xing
论文数: 0引用数: 0
h-index: 0
机构:
NCI, Div Canc Epidemiol & Genet, Biostat Branch, Rockville, MD 20850 USA
Fred Hutchinson Canc Res Ctr, 1124 Columbia St, Seattle, WA 98104 USANCI, Div Canc Epidemiol & Genet, Biostat Branch, Rockville, MD 20850 USA
Hua, Xing
Shi, Jianxin
论文数: 0引用数: 0
h-index: 0
机构:
NCI, Div Canc Epidemiol & Genet, Biostat Branch, Rockville, MD 20850 USANCI, Div Canc Epidemiol & Genet, Biostat Branch, Rockville, MD 20850 USA
Shi, Jianxin
Liu, Danping
论文数: 0引用数: 0
h-index: 0
机构:
NCI, Div Canc Epidemiol & Genet, Biostat Branch, Rockville, MD 20850 USANCI, Div Canc Epidemiol & Genet, Biostat Branch, Rockville, MD 20850 USA
机构:
Shandong Univ, Inst Financial Studies, Jinan, Shandong, Peoples R China
Northwestern Univ, Dept Prevent Med, Chicago, IL 60611 USAShandong Univ, Inst Financial Studies, Jinan, Shandong, Peoples R China
Chai, Haitao
Jiang, Hongmei
论文数: 0引用数: 0
h-index: 0
机构:
Northwestern Univ, Dept Stat, Evanston, IL 60208 USAShandong Univ, Inst Financial Studies, Jinan, Shandong, Peoples R China
Jiang, Hongmei
Lin, Lu
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ, Inst Financial Studies, Jinan, Shandong, Peoples R ChinaShandong Univ, Inst Financial Studies, Jinan, Shandong, Peoples R China
Lin, Lu
Liu, Lei
论文数: 0引用数: 0
h-index: 0
机构:
Washington Univ, Div Biostat, St Louis, MO 63130 USA
Northwestern Univ, Dept Prevent Med, Chicago, IL 60611 USAShandong Univ, Inst Financial Studies, Jinan, Shandong, Peoples R China
机构:
Beihang Univ, Sch Econ & Management, Beijing 100191, Peoples R China
Beijing Key Lab Emergence Support Simulat Technol, Beijing 100191, Peoples R ChinaBeihang Univ, Sch Econ & Management, Beijing 100191, Peoples R China
Wang, Zhichao
Wang, Huiwen
论文数: 0引用数: 0
h-index: 0
机构:
Beihang Univ, Sch Econ & Management, Beijing 100191, Peoples R China
Beijing Key Lab Emergence Support Simulat Technol, Beijing 100191, Peoples R China
Beijing Adv Innovat Ctr Big Data & Brain Comp, Beijing 100191, Peoples R ChinaBeihang Univ, Sch Econ & Management, Beijing 100191, Peoples R China
Wang, Huiwen
Wang, Shanshan
论文数: 0引用数: 0
h-index: 0
机构:
Beihang Univ, Sch Econ & Management, Beijing 100191, Peoples R China
Beijing Adv Innovat Ctr Big Data & Brain Comp, Beijing 100191, Peoples R ChinaBeihang Univ, Sch Econ & Management, Beijing 100191, Peoples R China