Fredholm determinants and the statistics of charge transport

被引:38
作者
Avron, J. E. [1 ]
Bachmann, S. [2 ]
Graf, G. M. [2 ]
Klich, I. [3 ]
机构
[1] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel
[2] ETH Honggerberg, CH-8093 Zurich, Switzerland
[3] CALTECH, Condensed Matter Dept, Pasadena, CA 91125 USA
关键词
D O I
10.1007/s00220-008-0449-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using operator algebraic methods we show that the moment generating function of charge transport in a system with infinitely many non-interacting Fermions is given by a determinant of a certain operator in the one-particle Hilbert space. The formula is equivalent to a formula of Levitov and Lesovik in the finite dimensional case and may be viewed as its regularized form in general. Our result embodies two tenets often realized in mesoscopic physics, namely, that the transport properties are essentially independent of the length of the leads and of the depth of the Fermi sea.
引用
收藏
页码:807 / 829
页数:23
相关论文
共 24 条
[1]  
ARAKI H, 1964, HELV PHYS ACTA, V37, P136
[2]  
Araki H., 1985, CONT MATH, P23, DOI DOI 10.1090/C0NM/062/878376.MR878376
[3]   Adiabatic charge pumping in open quantum systems [J].
Avron, JE ;
Elgart, A ;
Graf, GM ;
Sadun, L ;
Schnee, K .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (04) :528-561
[4]   Twisted duality of the CAR-algebra [J].
Baumgärtel, H ;
Jurke, M ;
Lledó, F .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (08) :4158-4179
[5]  
Bratteli O., 1979, Operator Algebras and Quantum Statistical Mechanics, V1
[6]   CURRENT PARTITION IN MULTIPROBE CONDUCTORS IN THE PRESENCE OF SLOWLY OSCILLATING EXTERNAL POTENTIALS [J].
BUTTIKER, M ;
THOMAS, H ;
PRETRE, A .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1994, 94 (1-2) :133-137
[7]  
DEROECK W, 2007, LARGE DEVIATION GENE
[8]   FIELDS, OBSERVABLES AND GAUGE TRANSFORMATIONS .I. [J].
DOPLICHER, S ;
HAAG, R ;
ROBERTS, JE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1969, 13 (01) :1-+
[9]   Coherent states of alternating current [J].
Ivanov, DA ;
Lee, HW ;
Levitov, LS .
PHYSICAL REVIEW B, 1997, 56 (11) :6839-6850
[10]   Mathematical theory of non-equilibrium quantum statistical mechanics [J].
Jaksíc, V ;
Pillet, CA .
JOURNAL OF STATISTICAL PHYSICS, 2002, 108 (5-6) :787-829