A Two-Layer Night-time Vehicle Detector

被引:0
作者
Wang, Weihong
Shen, Chunhua
Zhang, Jian
Paisitkriangkrai, Sakrapee
机构
来源
2009 DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA 2009) | 2009年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a two-layer night time vehicle detector in this work At the first layer, vehicle headlight detection [1, 2, 3] is applied to find areas (bounding boxes) where the possible pairs of headlights locate in the image, the Haar feature based AdaBoost framework is then applied to detect the vehicle front. This approach has achieved a very promising performance for vehicle detection at night time. Our results show that the proposed algorithm can obtain a detection rate of over 90% at a very low false positive rate (1.5%). Without any code optimization, it also performs at a faster speed compared to the standard Haar feature based AdaBoost approach [4].
引用
收藏
页码:162 / 167
页数:6
相关论文
共 13 条
  • [1] A coarse-to-fine strategy for multiclass shape detection
    Amit, Y
    Geman, D
    Fan, XD
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (12) : 1606 - 1621
  • [2] [Anonymous], 2000, SUPPORT VECTOR MACHI
  • [3] DUFAUT M, 1994, P IEEE INT C IM PROC
  • [4] FREUND R, 1997, P IEEE C COMP VIS PA
  • [5] An image processing system for driver assistance
    Handmann, U
    Kalinke, T
    Tzomakas, C
    Werner, M
    Seelen, W
    [J]. IMAGE AND VISION COMPUTING, 2000, 18 (05) : 367 - 376
  • [6] LIU Y, 2003, ELECT COMPUTER ENG C, V28, P6367
  • [7] Automatic congestion detection system for underground platforms
    Lo, BPL
    Velastin, SA
    [J]. PROCEEDINGS OF 2001 INTERNATIONAL SYMPOSIUM ON INTELLIGENT MULTIMEDIA, VIDEO AND SPEECH PROCESSING, 2001, : 158 - 161
  • [8] PICCARDI M, 2004, ARC CTR EXC AUT SYST
  • [9] PICCARDI M, 2000, INT TRANSP SYST IEEE, V1
  • [10] Robert K., 2009, IEEE C ADV VID SIGN