Telomere elongation by a mutant tankyrase 1 without TRF1 poly(ADP-ribosyl)ation

被引:8
|
作者
Muramatsu, Yukiko [1 ]
Tahara, Hidetoshi [2 ]
Ono, Taeko [2 ]
Tsuruo, Takashi
Seimiya, Hiroyuki [1 ]
机构
[1] Japanese Fdn Canc Res, Ctr Canc Chemotherapy, Div Mol Biotherapy, Koto Ku, Tokyo 1358550, Japan
[2] Hiroshima Univ, Dept Cellular & Mol Biol, Div Integrated Med Sci, Grad Sch Biomed Sci, Hiroshima 7348551, Japan
关键词
telomere; tankyrase; 1; Poly(ADP-ribosyl)ation; PARP; telomerase; TRF1;
D O I
10.1016/j.yexcr.2007.12.005
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Telomeres are the capping structures of the eukaryotic chromosome ends. Tankyrase 1 is a poly(ADP-ribose) polymerase that elongates telomeres in a telomerase-dependent manner. This function of tankyrase 1 is mediated by down-regulation of TRF1, a negative regulator of telomere access to telomerase. Namely, tankyrase 1 poly(ADP-ribosyl)ates (PARsylates) TRF1, which in turn dissociates TRF1 from telomeres. The resulting telomeres become better substrates for telomerase-mediated DNA extension. Tankyrase 1 has five independent TRF1 binding sites, ARC (ANK repeat cluster) I to V. Among them, the most C-terminal ARC V is required for TRF1 PARsylation and its release from telomeres. By contrast, functional significance of other four ARCs remains elusive. In this study, we generated a mutant tankyrase 1 that had inactive ARC IV and lacked ARC V but elongated telomeres without TRF1 PARsylation. Consistent with the failure in PARsylation, this mutant only marginally released TRF1 from telomeres. Still, it decreased telomere binding of POT1, a downstream effector of TRF1-mediated telomere length control, and elongated the telomeric 3'-overhang as the wild-type tankyrase 1 did. Thus even without TRF1 PARsylation, this mutant tankyrase 1 seemed to loosen the closed structure of the telomeric heterochromatin. These findings suggest a new role for multiple ARCs in telomere extension by tankyrase 1. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1115 / 1124
页数:10
相关论文
共 50 条
  • [1] Functional subdomain in the ankyrin domain of Tankyrase 1 required for poly(ADP-ribosyl)ation of TRF1 and telomenre elongation
    Seimiya, H
    Muramatsu, Y
    Smith, S
    Tsuruo, T
    MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (05) : 1944 - 1955
  • [2] Tankyrase1-mediated poly(ADP-ribosyl)ation of TRF1 maintains cell survival after telomeric DNA damage
    Yang, Lu
    Sun, Luxi
    Teng, Yaqun
    Chen, Hao
    Gao, Ying
    Levine, Arthur S.
    Nakajima, Satoshi
    Lan, Li
    NUCLEIC ACIDS RESEARCH, 2017, 45 (07) : 3906 - 3921
  • [3] PARP1 allows proper telomere replication through TRF1 poly (ADP-ribosyl)ation and helicase recruitment
    Maresca, C.
    Dello Stritto, A.
    D'Angelo, C.
    Petti, E.
    Rizzo, A.
    Vertecchi, E.
    Berardinelli, F.
    Bonanni, L.
    Sgura, A.
    Antoccia, A.
    Graziani, G.
    Biroccio, A.
    Salvati, E.
    COMMUNICATIONS BIOLOGY, 2023, 6 (01)
  • [4] PARP1 allows proper telomere replication through TRF1 poly (ADP-ribosyl)ation and helicase recruitment
    C. Maresca
    A. Dello Stritto
    C. D’Angelo
    E. Petti
    A. Rizzo
    E. Vertecchi
    F. Berardinelli
    L. Bonanni
    A. Sgura
    A. Antoccia
    G. Graziani
    A. Biroccio
    E. Salvati
    Communications Biology, 6
  • [5] NuMA is a major acceptor of poly(ADP-ribosyl)ation by tankyrase 1 in mitosis
    Chang, W
    Dynek, JN
    Smith, S
    BIOCHEMICAL JOURNAL, 2005, 391 : 177 - 184
  • [6] Poly (ADP-ribosyl)ation and stroke
    Chiarugi, A
    PHARMACOLOGICAL RESEARCH, 2005, 52 (01) : 15 - 24
  • [7] Poly(ADP-ribosyl)ation in plants
    Briggs, Amy G.
    Bent, Andrew F.
    TRENDS IN PLANT SCIENCE, 2011, 16 (07) : 372 - 380
  • [8] OVERVIEW OF POLY(ADP-RIBOSYL)ATION
    SMULSON, ME
    SUGIMURA, T
    METHODS IN ENZYMOLOGY, 1984, 106 : 438 - 439
  • [9] Poly(ADP-ribosyl)ation in carcinogenesis
    Masutani, Mitsuko
    Fujimori, Hiroaki
    MOLECULAR ASPECTS OF MEDICINE, 2013, 34 (06) : 1202 - 1216
  • [10] Poly(ADP-ribosyl)ation and aging
    Bürkle, A
    Beneke, S
    Muiras, ML
    EXPERIMENTAL GERONTOLOGY, 2004, 39 (11-12) : 1599 - 1601