Optimal Control of Data Transmission over a Fluctuating Channel with Unknown State

被引:2
作者
Kuznetsov, N. A. [1 ,2 ]
Myasnikov, D. V. [1 ]
Semenikhin, K. V. [1 ,2 ,3 ]
机构
[1] Russian Acad Sci, Kotelnikov Inst Radio Engn & Elect, Moscow 125009, Russia
[2] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Oblast, Russia
[3] Natl Res Univ, Moscow Aviat Ins, Moscow 125993, Russia
基金
俄罗斯科学基金会;
关键词
queuing system; data transmission; optimal control; augmented problem; control with incomplete information; filtering estimate;
D O I
10.1134/S1064226918120136
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Optimization problem for data packet transmission over a communication channel governed by a hidden Markov process is considered. The transmitter is modeled as a single-channel finite-buffer queuing system with non-stationary Poisson arrivals. The service rate is proportional to the controlled transmission rate with channel-dependent factor. Buffer overflow leads to packet losses, whereas channel state worsening results in lower service rate. The goal of the optimization problem is to minimize average losses under constraint on the transmitter energy consumption. The exact form of the optimal policy is presented for the augmented control problem. Several control policies with incomplete information are proposed on the basis of the optimal control and hidden state estimates. We consider two estimates based on the optimal filtering equations and the current queue state. Results of computer simulation are presented to compare the control policies under consideration.
引用
收藏
页码:1506 / 1517
页数:12
相关论文
共 17 条
[1]  
[Anonymous], 1999, STOCH MODEL SER, DOI 10.1201/9781315140223
[2]  
[Anonymous], 1995, Controlled Queueing Systems
[3]  
[Борисов Андрей Владимирович Borisov A.V.], 2016, [Информатика и ее применения, Informatika i ee primeneniya], V10, P2, DOI 10.14357/19922264160201
[4]  
[Борисов Андрей Владимирович Borisov Andrey V.], 2014, [Информатика и ее применения, Informatika i ee primeneniya], V8, P53, DOI 10.14357/19922264140307
[5]  
Cover TM., 1991, ELEMENTS INFORM THEO, V1, P279
[6]  
Elliott RJ, 2008, Hidden Markov models: estimation and control
[7]   Optimization of Wireless Sensor Network and UAV Data Acquisition [J].
Ho, Dac-Tu ;
Grotli, Esten Ingar ;
Sujit, P. B. ;
Johansen, Tor Arne ;
Sousa, Joao Borges .
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2015, 78 (01) :159-179
[8]   CONSTRAINED ADMISSION CONTROL TO A QUEUING SYSTEM [J].
HORDIJK, A ;
SPIEKSMA, F .
ADVANCES IN APPLIED PROBABILITY, 1989, 21 (02) :409-431
[9]   Optimization of Two-Phase Queuing System and Its Application to the Control of Data Transmission between Two Robotic Agents [J].
Kuznetsov, N. A. ;
Myasnikov, D. V. ;
Semenikhin, K. V. .
JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2017, 62 (12) :1484-1498
[10]  
Miller B., 2017, P 20 IFAC WORLD C IF