Structures buckling under tensile dead load

被引:61
作者
Zaccaria, D. [2 ]
Bigoni, D. [1 ]
Noselli, G. [1 ]
Misseroni, D. [1 ]
机构
[1] Univ Trent, Dept Mech & Struct Engn, Trento, Italy
[2] Univ Trieste, Dept Civil & Environm Engn, Trieste, Italy
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2011年 / 467卷 / 2130期
关键词
elastica; bifurcation; instability under tension;
D O I
10.1098/rspa.2010.0505
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Some 250 years after the systematic experiments by Musschenbroek and their rationalization by Euler, for the first time we show that it is possible to design structures (i.e. mechanical systems whose elements are governed by the equation of the elastica) exhibiting bifurcation and instability ('buckling') under tensile load of constant direction and point of application ('dead'). We show both theoretically and experimentally that the behaviour is possible in elementary structures with a single degree of freedom and in more complex mechanical systems, as related to the presence of a structural junction, called 'slider', allowing only relative transversal displacement between the connected elements. In continuous systems where the slider connects two elastic thin rods, bifurcation occurs both in tension and in compression, and is governed by the equation of the elastica, employed here for tensile loading, so that the deformed rods take the form of the capillary curve in a liquid, which is in fact governed by the equation of the elastica under tension. Since axial load in structural elements deeply influences dynamics, our results may provide application to innovative actuators for mechanical wave control; moreover, they open a new perspective in the understanding of failure within structural elements.
引用
收藏
页码:1686 / 1700
页数:15
相关论文
共 10 条
[1]   Dynamics of a prestressed stiff layer on an elastic half space: filtering and band gap characteristics of periodic structural models derived from long-wave asymptotics [J].
Bigoni, D. ;
Gei, M. ;
Movchan, A. B. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2008, 56 (07) :2494-2520
[2]  
Byrd P.F., 1971, HDB ELLIPTIC INTEGRA
[3]  
GAJEWSKI A, 1974, ENG T, V22, P265
[4]   Band-gap shift and defect-induced annihilation in prestressed elastic structures [J].
Gei, M. ;
Movchan, A. B. ;
Bigoni, D. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (06)
[5]  
Lamb H., 1928, STATICS, V3rd ed.
[6]  
Love AEH., 1892, TREATISE MATH THEORY
[7]  
Timoshenko S.P., 1970, THEORY ELASTIC STABI, V3rd
[8]  
Ziegler H., 1977, PRINCIPLES STRUCTURA
[9]  
Zyczkowski M., 1991, STRENGTH STRUCTURAL
[10]  
[No title captured]