Nonoscillatory solutions to fourth-order neutral dynamic equations on time scales

被引:1
作者
Qiu, Yang-Cong [1 ]
机构
[1] Shunde Polytech, Sch Humanities, Foshan, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonoscillatory solution; Neutral dynamic equation; Fourth-order; Time scale; ASYMPTOTIC-BEHAVIOR; OSCILLATION; EXISTENCE;
D O I
10.1186/s13662-019-2451-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present some sufficient conditions and necessary conditions for the existence of nonoscillatory solutions to a class of fourth-order nonlinear neutral dynamic equations on time scales by employing Banach spaces and Krasnoselskii's fixed point theorem. Two examples are given to illustrate the applications of the results.
引用
收藏
页数:15
相关论文
共 25 条
[1]   Dynamic equations on time scales: a survey [J].
Agarwal, R ;
Bohner, M ;
O'Regan, D ;
Peterson, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 141 (1-2) :1-26
[2]  
Agarwal R. P., 1999, Results Math., V35, P3, DOI DOI 10.1007/BF03322019
[3]   Oscillation Theorems for Fourth-Order Half-Linear Delay Dynamic Equations with Damping [J].
Agarwal, Ravi P. ;
Bohner, Martin ;
Li, Tongxing ;
Zhang, Chenghui .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2014, 11 (02) :463-475
[4]  
Bohner M., 2001, Dynamic Equations on Time Scales: An Introduction with Applications
[5]  
Bohner M., 2003, ADV DYNAMIC EQUATION, DOI DOI 10.1007/978-0-8176-8230-9
[6]   Fite-Hille-Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments [J].
Bohner, Martin ;
Hassan, Taher S. ;
Li, Tongxing .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2018, 29 (02) :548-560
[7]  
Chen Y., 1992, FUNKC EKVACIOJ-SER I, V35, P557
[8]   EXISTENCE OF NONOSCILLATORY SOLUTIONS TO SECOND-ORDER NONLINEAR NEUTRAL DYNAMIC EQUATIONS ON TIME SCALES [J].
Gao, Jin ;
Wang, Qiru .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2013, 43 (05) :1521-1535
[9]  
Hilger S., 1988, THESIS
[10]  
Hilger S., 1990, Results Math, V18, P18, DOI [DOI 10.1007/BF03323153, 10.1007/BF03323153]