Pursuing the high-temperature quantum anomalous Hall effect in MnBi2Te4/Sb2Te3 heterostructures

被引:30
作者
Qi, Shifei [1 ,2 ,3 ]
Gao, Ruiling [1 ,4 ]
Chang, Maozhi [1 ,4 ]
Han, Yulei [2 ,3 ]
Qiao, Zhenhua [2 ,3 ]
机构
[1] Hebei Normal Univ, Dept Phys, Shijiazhuang 050024, Hebei, Peoples R China
[2] Univ Sci & Technol China, ICQD, Hefei Natl Lab Phys Sci Microscale, CAS Key Lab Strongly Coupled Quantum Matter Phys, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China
[4] Shanxi Normal Univ, Inst Mat Sci, Linfen 041004, Shanxi, Peoples R China
关键词
TOPOLOGICAL MATERIALS; FERROMAGNETISM; REALIZATION; INSULATORS; STATE; PHASE;
D O I
10.1103/PhysRevB.101.014423
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quantum anomalous Hall effect (QAHE) has been experimentally realized in magnetically doped topological insulators or intrinsic magnetic topological insulator MnBi2Te4 by applying an external magnetic field. However, either the low observation temperature or the unexpected external magnetic field (tuning all MnBi2Te4 layers to be ferromagnetic) still hinders further application of QAHE. Here, we theoretically demonstrate that proper stacking of MnBi2Te4 and Sb2Te3 layers is able to produce intrinsically ferromagnetic van der Waals heterostructures to realize the high-temperature QAHE. We find that interlayer ferromagnetic transition can happen at T-C = 42 K when a five-quintuple-layer Sb2Te3 topological insulator is inserted into two septuple-layer MnBi2Te4 with interlayer antiferromagnetic coupling. Band structure and topological property calculations show that MnBi2Te4/Sb2Te3/MnBi2Te4 heterostructure exhibits a topologically nontrivial band gap around 26 meV, that hosts a QAHE with a Chern number of C = 1. In addition, our proposed materials system should be considered as an ideal platform to explore high-temperature QAHE due to the fact of natural charge compensation, originating from the intrinsic n-type defects in MnBi2Te4 and p-type defects in Sb2Te3.
引用
收藏
页数:7
相关论文
共 55 条
[1]   Large anomalous Hall effect in ferromagnetic insulator-topological insulator heterostructures [J].
Alegria, L. D. ;
Ji, H. ;
Yao, N. ;
Clarke, J. J. ;
Cava, R. J. ;
Petta, J. R. .
APPLIED PHYSICS LETTERS, 2014, 105 (05)
[2]   BAND THEORY AND MOTT INSULATORS - HUBBARD-U INSTEAD OF STONER-I [J].
ANISIMOV, VI ;
ZAANEN, J ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1991, 44 (03) :943-954
[3]  
[Anonymous], ARXIV190703380
[4]  
[Anonymous], ARXIV190411468
[5]   Magnetic properties and disorder effects in diluted magnetic semiconductors -: art. no. 195210 [J].
Bergqvist, L ;
Eriksson, O ;
Kudrnovsky, J ;
Drchal, V ;
Bergman, A ;
Nordström, L ;
Turek, I .
PHYSICAL REVIEW B, 2005, 72 (19)
[6]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[7]  
Chang CZ, 2015, NAT MATER, V14, P473, DOI [10.1038/nmat4204, 10.1038/NMAT4204]
[8]   Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator [J].
Chang, Cui-Zu ;
Zhang, Jinsong ;
Feng, Xiao ;
Shen, Jie ;
Zhang, Zuocheng ;
Guo, Minghua ;
Li, Kang ;
Ou, Yunbo ;
Wei, Pang ;
Wang, Li-Li ;
Ji, Zhong-Qing ;
Feng, Yang ;
Ji, Shuaihua ;
Chen, Xi ;
Jia, Jinfeng ;
Dai, Xi ;
Fang, Zhong ;
Zhang, Shou-Cheng ;
He, Ke ;
Wang, Yayu ;
Lu, Li ;
Ma, Xu-Cun ;
Xue, Qi-Kun .
SCIENCE, 2013, 340 (6129) :167-170
[9]  
Checkelsky JG, 2014, NAT PHYS, V10, P731, DOI [10.1038/nphys3053, 10.1038/NPHYS3053]
[10]   Large-Chern-Number Quantum Anomalous Hall Effect in Thin-Film Topological Crystalline Insulators [J].
Fang, Chen ;
Gilbert, Matthew J. ;
Bernevig, B. Andrei .
PHYSICAL REVIEW LETTERS, 2014, 112 (04)