Some remarks on the Walras equilibrium problem in Lebesgue spaces

被引:4
作者
Causa, A. [1 ]
Raciti, F. [1 ]
机构
[1] Univ Catania, Dipartimento Matemat & Informat, I-95125 Catania, Italy
关键词
Variational inequalities; Monotonicity; Walras equilibrium; Non-reflexive Lebesgue space; VARIATIONAL-INEQUALITIES; CONTINUITY;
D O I
10.1007/s11590-010-0193-y
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We introduce a parametric variational inequality in order to model the time dependent Walras economic equilibrium and discuss its relation with an integral formulation in the spaces (L-infinity, L-1). The role of monotonicity is analysed and, as a classical example, we study the Walras problem using the Cobb-Douglas functions in this new functional setting.
引用
收藏
页码:99 / 112
页数:14
相关论文
共 32 条
[1]  
[Anonymous], 2007, Finite-dimensional variational inequalities and complementarity problems
[2]  
[Anonymous], 1954, ELEMENTS PURE EC THE
[3]  
Appel J., 1990, NONLINEAR SUPERPOSIT
[4]  
Arrow K. J., 1991, ADV TXB EC
[5]   EXISTENCE OF AN EQUILIBRIUM FOR A COMPETITIVE ECONOMY [J].
Arrow, Kenneth J. ;
Debreu, Gerard .
ECONOMETRICA, 1954, 22 (03) :265-290
[6]  
Aubin J.P., 1990, SET VALUED ANAL, DOI 10.1007/978-0-8176-4848-0
[7]  
Border Kim C., 1985, Fixed Point Theorems with Applications To Economics and Game Theory
[8]   CONTINUITY RESULTS FOR A CLASS OF VARIATIONAL INEQUALITIES WITH APPLICATIONS TO TIME-DEPENDENT NETWORK PROBLEMS [J].
Caruso, A. O. ;
Khan, A. A. ;
Raciti, F. .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2009, 30 (11-12) :1272-1288
[9]  
CAUSA A, J OPTIM THE IN PRESS, DOI DOI 10.1007/SI0957-009-9622-4
[10]   TRAFFIC EQUILIBRIUM AND VARIATIONAL-INEQUALITIES [J].
DAFERMOS, S .
TRANSPORTATION SCIENCE, 1980, 14 (01) :42-54