Recent advancements in decellularized matrix technology for bone tissue engineering

被引:19
作者
Safdari, Mohammadreza [1 ]
Bibak, Bahram [2 ,3 ]
Soltani, Hoseinali [5 ]
Hashemi, Javad [3 ,4 ]
机构
[1] North Khorasan Univ Med Sci, Sch Med, Dept Surg, Bojnurd, Iran
[2] North Khorasan Univ Med Sci, Sch Med, Dept Physiol & Pharmacol, Bojnurd, Iran
[3] North Khorasan Univ Med Sci, Res Ctr Nat Prod Safety & Med Plants, Bojnurd, Iran
[4] North Khorasan Univ Med Sci, Sch Med, Dept Pathobiol & Lab Sci, Bojnurd, Iran
[5] North Khorasan Univ Med Sci, Imam Ali Hosp, Sch Med, Dept Gen Surg, Bojnurd, Iran
关键词
Decellularization; Extracellular matrix (ECM); Biomaterials; Scaffold; Hydrogel; Microenvironment; Bioink; Bone regeneration; MESENCHYMAL STEM-CELLS; EXTRACELLULAR-MATRIX; IN-VITRO; OSTEOGENIC DIFFERENTIATION; OSTEOBLASTIC DIFFERENTIATION; BIOLOGICAL SCAFFOLD; CARTILAGE MATRIX; PROGENITOR CELLS; BOVINE BONE; EX-VIVO;
D O I
10.1016/j.diff.2021.08.004
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The native extracellular matrix (ECM) provides a matrix to hold tissue/organ, defines the cellular fate and function, and retains growth factors. Such a matrix is considered as a most biomimetic scaffold for tissue engineering due to the biochemical and biological components, 3D hierarchical structure, and physicomechanical properties. Several attempts have been performed to decellularize allo-or xeno-graft tissues and used them for bone repairing and regeneration. Decellularized ECM (dECM) technology has been developed to create an in vivo like microenvironment to promote cell adhesion, growth, and differentiation for tissue repair and regeneration. Decellularization is mediated through physical, chemical, and enzymatic methods. In this review, we describe the recent progress in bone decellularization and their applications as a scaffold, hydrogel, bioink, or particles in bone tissue engineering. Furthermore, we address the native dECM limitations and the potential of non-bone dECM, cell-based ECM, and engineered ECM (eECM) for in vitro osteogenic differentiation and in vivo bone regeneration.
引用
收藏
页码:25 / 34
页数:10
相关论文
共 152 条
[81]   Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein [J].
Luo, GB ;
Ducy, P ;
McKee, MD ;
Pinero, GJ ;
Loyer, E ;
Behringer, RR ;
Karsenty, G .
NATURE, 1997, 386 (6620) :78-81
[82]   Endochondral ossification: How cartilage is converted into bone in the developing skeleton [J].
Mackie, E. J. ;
Ahmed, Y. A. ;
Tatarczuch, L. ;
Chen, K. -S. ;
Mirams, M. .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2008, 40 (01) :46-62
[83]  
Mansour A, 2017, TISSUE ENG PT A, V23, P1436, DOI [10.1089/ten.TEA.2017.0026, 10.1089/ten.tea.2017.0026]
[84]   Fabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprinting [J].
Mao, Qijiang ;
Wang, Yifan ;
Li, Yang ;
Juengpanich, Sarun ;
Li, Wenhuan ;
Chen, Mingyu ;
Yin, Jun ;
Fu, Jianzhong ;
Cai, Xiujun .
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2020, 109
[85]   The role of bone sialoprotein in the tendon-bone insertion [J].
Marinovich, Ryan ;
Soenjaya, Yohannes ;
Wallace, Gregory Q. ;
Zuskov, Andre ;
Dunkman, Andrew ;
Foster, Brian L. ;
Ao, Min ;
Bartman, Kevin ;
Lam, Vida ;
Rizkalla, Amin ;
Beier, Frank ;
Somerman, Martha J. ;
Holdsworth, David W. ;
Soslowsky, Louis J. ;
Lagugne-Labarthet, Francois ;
Goldberg, Harvey A. .
MATRIX BIOLOGY, 2016, 52-54 :325-338
[86]   Tissue-Specific Decellularization Methods: Rationale and Strategies to Achieve Regenerative Compounds [J].
Mendibil, Unai ;
Ruiz-Hernandez, Raquel ;
Retegi-Carrion, Sugoi ;
Garcia-Urquia, Nerea ;
Olalde-Graells, Beatriz ;
Abarrategi, Ander .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (15) :1-29
[87]   Decellularization of pericardial tissue and its impact on tensile viscoelasticity and glycosaminoglycan content [J].
Mendoza-Novelo, Birzabith ;
Avila, Eva E. ;
Cauich-Rodriguez, Juan V. ;
Jorge-Herrero, Eduardo ;
Rojo, Francisco J. ;
Guinea, Gustavo V. ;
Mata-Mata, Jose L. .
ACTA BIOMATERIALIA, 2011, 7 (03) :1241-1248
[88]   Osteoinductive potential of a novel biphasic calcium phosphate bone graft in comparison with autographs, xenografts, and DFDBA [J].
Miron, Richard J. ;
Sculean, Anton ;
Shuang, Yang ;
Bosshardt, Dieter D. ;
Gruber, Reinhard ;
Buser, Daniel ;
Chandad, Fatiha ;
Zhang, Yufeng .
CLINICAL ORAL IMPLANTS RESEARCH, 2016, 27 (06) :668-675
[89]   Osteocalcin and its endocrine functions [J].
Mizokami, Akiko ;
Kawakubo-Yasukochi, Tomoyo ;
Hirata, Masato .
BIOCHEMICAL PHARMACOLOGY, 2017, 132 :1-8
[90]   Decellularized Adipose Tissue Hydrogel Promotes Bone Regeneration in Critical-Sized Mouse Femoral Defect Model [J].
Mohiuddin, Omair A. ;
Campbell, Brett ;
Poche, J. Nick ;
Ma, Michelle ;
Rogers, Emma ;
Gaupp, Dina ;
Harrison, Mark A. A. ;
Bunnell, Bruce A. ;
Hayes, Daniel J. ;
Gimble, Jeffrey M. .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2019, 7