UNSUPERVISED ENDMEMBER EXTRACTION: APPLICATION TO HYPERSPECTRAL IMAGES FROM MARS

被引:2
作者
Luo, Bin [1 ]
Chanussot, Jocelyn [1 ]
Doute, Sylvain [2 ]
机构
[1] GIPSA Lab, F-38402 Grenoble, France
[2] LPG, F-38041 Grenoble, France
来源
2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6 | 2009年
关键词
COMPONENT ANALYSIS;
D O I
10.1109/ICIP.2009.5414584
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we try to identify and quantify the chemical species present on the surface of planet Mars with the help of hyperspectral images provided by the instrument OMEGA. For this purpose, we suppose that the spectrum of each pixel is a linear mixture of the spectra of different endmembers. From this linear mixture hypothesis, our work is divided into two steps. Firstly, we propose a new unsupervised method for estimating the number of endmembers based on the eigenvalues of covariance and correlation matrix of the hyperspectral data. This method is then validated on synthetic data. With the help of the number estimated by the precedent step, we use the Vertex Component Analysis (VCA) to extract the spectra and the abundances of the endmembers. The results on hyperspectral image taken by the instrument OMEGA are shown.
引用
收藏
页码:2869 / +
页数:2
相关论文
共 39 条
[31]   Bayesian algorithms for supervised, semi-supervides, and unsupervised unmixing of hyperspectral images [J].
Dobigeon, Nicolas ;
Moussaoui, Said ;
Coulon, Martial ;
Tourneret, Jean-Yves ;
Hero, Alfred O. .
TRAITEMENT DU SIGNAL, 2010, 27 (01) :79-108
[32]   A FAST ITERATIVE KERNEL PCA FEATURE EXTRACTION FOR HYPERSPECTRAL IMAGES [J].
Liao, Wenzhi ;
Pizurica, Aleksandra ;
Philips, Wilfried ;
Pi, Youguo .
2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, :1317-1320
[33]   GPU-Based Parallel Kernel PCA Feature Extraction for Hyperspectral Images [J].
Luo, Renbo ;
Pi, Youguo .
INTERNATIONAL CONFERENCE ON REMOTE SENSING AND WIRELESS COMMUNICATIONS (RSWC 2014), 2014, :140-145
[34]   Recent development of feature extraction and classification multispectral/hyperspectral images: a systematic literature review [J].
Setiyoko, A. ;
Dharma, I. G. W. S. ;
Haryanto, T. .
1ST INTERNATIONAL CONFERENCE ON COMPUTING AND APPLIED INFORMATICS 2016 : APPLIED INFORMATICS TOWARD SMART ENVIRONMENT, PEOPLE, AND SOCIETY, 2017, 801
[35]   Material based salient object detection from hyperspectral images [J].
Liang, Jie ;
Zhou, Jun ;
Tong, Lei ;
Bai, Xiao ;
Wang, Bin .
PATTERN RECOGNITION, 2018, 76 :476-490
[36]   Multi-scale nonlinear edge-based three-phase model for unsupervised hyperspectral feature extraction [J].
Wang, Xianyue ;
Qian, Longxia ;
Bai, Chengzu ;
Cao, Jinde .
JOURNAL OF APPLIED REMOTE SENSING, 2023, 17 (03)
[37]   Endmember Extraction From Highly Mixed Data Using Linear Mixture Model Constrained Particle Swarm Optimization [J].
Xu, Mingming ;
Du, Bo ;
Fan, Yanguo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (08) :5502-5511
[38]   Feature Extraction for Hyperspectral Imagery: The Evolution From Shallow to Deep: Overview and Toolbox [J].
Rasti, Behnood ;
Hong, Danfeng ;
Hang, Renlong ;
Ghamisi, Pedram ;
Kang, Xudong ;
Chanussot, Jocelyn ;
Benediktsson, Jon Atli .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2020, 8 (04) :60-88
[39]   Visual Feature Extraction From Voxel-Weighted Averaging of Stimulus Images in 2 fMRI Studies [J].
Hart, Corey B. ;
Rose, William J. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2013, 60 (11) :3124-3130