A new nested Cholesky decomposition and estimation for the covariance matrix of bivariate longitudinal data

被引:15
作者
Feng, Sanying [1 ,2 ]
Lian, Heng [3 ]
Xue, Liugen [2 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
[2] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
[3] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
基金
北京市自然科学基金;
关键词
Covariance structure; Multivariate longitudinal data; Cholesky decomposition; Maximum likelihood estimation; Variable selection; Moving average; GENERALIZED ESTIMATING EQUATIONS; MODELS; SELECTION; LIKELIHOOD;
D O I
10.1016/j.csda.2016.04.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we propose a nested modified Cholesky decomposition for modeling the covariance structure in multivariate longitudinal data analysis. The entries of this decomposition have simple structures and can be interpreted as the generalized moving average coefficient matrices and innovation covariance matrices. We model the elements of these matrices by a class of unconstrained linear models, and develop a Fisher scoring algorithm to compute the maximum likelihood estimator of the regression parameters. The consistency and asymptotic normality of the estimators are established. Furthermore, we employ the smoothly clipped absolute deviation (SCAD) penalty to select the relevant variables in the models. The resulting SCAD estimators are shown to be asymptotically normal and have the oracle property. Some simulations are conducted to examine the finite sample performance of the proposed method. A real dataset is analyzed for illustration. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:98 / 109
页数:12
相关论文
共 28 条
[1]   Variances are not always nuisance parameters [J].
Carroll, RJ .
BIOMETRICS, 2003, 59 (02) :211-220
[2]   Analysis of multivariate longitudinal data using quasi-least squares [J].
Chaganty, NR ;
Naik, DN .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2002, 103 (1-2) :421-436
[3]   The matrix logarithmic covariance model [J].
Chiu, TYM ;
Leonard, T ;
Tsui, KW .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (433) :198-210
[4]   Nonparametric estimation of covariance structure in longitudinal data [J].
Diggle, PJ ;
Verbyla, AP .
BIOMETRICS, 1998, 54 (02) :401-415
[5]  
Diggle PJ., 2002, ANAL LONGITUDINAL DA, V2nd ed., P2002
[6]   New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis [J].
Fan, JQ ;
Li, R .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (467) :710-723
[7]   Variable selection via nonconcave penalized likelihood and its oracle properties [J].
Fan, JQ ;
Li, RZ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1348-1360
[8]   A multivariate random-effects model with restricted parameters: Application to assessing radiation therapy for brain tumours [J].
Fang, HB ;
Tian, GL ;
Xiong, XP ;
Tan, M .
STATISTICS IN MEDICINE, 2006, 25 (11) :1948-1959
[9]  
Hamilton J. D., 1994, Time series analysis
[10]  
Heitjan DF, 1997, STAT MED, V16, P347, DOI 10.1002/(SICI)1097-0258(19970228)16:4<347::AID-SIM423>3.0.CO