Dust accumulation sensing system with a screen-printed interdigitated sensor

被引:0
作者
Vilmi, Pauliina [1 ]
Schuss, Christian [1 ]
Hannila, Esa [1 ]
Sliz, Rafal [1 ]
Fabritius, Tapio [1 ]
机构
[1] Univ Oulu, Optoelect & Measurements Tech Unit, Oulu, Finland
来源
2022 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC 2022) | 2022年
基金
芬兰科学院;
关键词
air filtering; capacitive sensor; environmental sensor; printed electronics; screen printing; DESIGN;
D O I
10.1109/I2MTC48687.2022.9806631
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Regardless of the importance of air filtering, there are quite few technologies to observe the purity of a filter. Optimizing the filter replacement cycle is necessary from the cost efficiency and the ecological point of view, being a motive for sensor technology development. In this paper, we propose and demonstrate a concept for that purpose. A capacitive sensor element is screen-printed directly onto the filter surface and assembled in 3D printed frame to observe the particle accumulation while the filter is in use. An additional sensor element is printed to the back side of the filter to act as a reference. That reference sensor improves the sensitivity of the system by enabling the compensation of the temperature and humidity fluctuations. The sensor was placed inside a robot vacuum cleaner and its performance was demonstrated and evaluated by repeated cleaning cycles in a controlled environment. By measuring the difference between the two capacitances of the sensors, an increase of up to 1.55 pF was observed, which equals +9.3% of sensor's initial capacitance value. After cleaning the sensor area, a permanent increase of 0.4 pF was measured, which equals +2.4% of the initial capacitance value.
引用
收藏
页数:6
相关论文
共 29 条
[1]   Inkjet-Printed Human Body Temperature Sensor for Wearable Electronics [J].
Ali, Shawkat ;
Khan, Saleem ;
Bermak, Amine .
IEEE ACCESS, 2019, 7 :163981-163987
[2]   Paper-based printed impedance sensors for water sorption and humidity analysis [J].
Alkin K. ;
Stockinger T. ;
Zirkl M. ;
Stadlober B. ;
Bauer-Gogonea S. ;
Kaltenbrunner M. ;
Bauer S. ;
Müller U. ;
Schwödiauer R. .
Flexible and Printed Electronics, 2017, 2 (01)
[3]  
Badamasi Y. A., 2014, IEEE ICECCO, P1
[4]   Promising ethanol detection enhancement of Cu2O thin film deposited by GLAD technique [J].
Ben Nacer, S. ;
Jlidi, D. ;
Labidi, A. ;
Akkari, F. Chaffar ;
Touihri, S. ;
Maaref, M. .
MEASUREMENT, 2020, 151
[5]  
Doring J., 2019, GMA ITG FACHT SENS M, P700, DOI [10.5162/sensoren2019/P2.7, DOI 10.5162/SENSOREN2019/P2.7]
[6]   Paper as Active Layer in Inkjet-Printed Capacitive Humidity Sensors [J].
Gaspar, Cristina ;
Olkkonen, Juuso ;
Passoja, Soile ;
Smolander, Maria .
SENSORS, 2017, 17 (07)
[7]   Review-Textile Based Chemical and Physical Sensors for Healthcare Monitoring [J].
Hatamie, Amir ;
Angizi, Shayan ;
Kumar, Saurabh ;
Pandey, Chandra Mouli ;
Simchi, Abdolreza ;
Willander, Magnus ;
Malhotra, Bansi D. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (03)
[8]   Planar capacitive sensors - designs and applications [J].
Hu, Xiaohui ;
Yang, Wuqiang .
SENSOR REVIEW, 2010, 30 (01) :24-39
[9]   Novel printed nanostructured gas sensors [J].
Kukkola, J. ;
Jansson, E. ;
Popov, A. ;
Lappalainen, J. ;
Maklin, J. ;
Halonen, N. ;
Toth, G. ;
Shchukarev, A. ;
Mikkola, J. -P. ;
Jantunen, H. ;
Kordas, K. ;
Hast, J. ;
Hassinen, T. ;
Sunnari, A. ;
Jokinen, K. ;
Haverinen, H. ;
Sliz, R. ;
Jabbour, G. ;
Fabritius, T. ;
Myllyla, R. ;
Vasiliev, A. ;
Zaretskiy, N. .
EUROSENSORS XXV, 2011, 25
[10]   Design principles for multicuhannel fringing electric field sensors [J].
Li, XBB ;
Larson, SD ;
Zyuzin, AS ;
Mamishev, AV .
IEEE SENSORS JOURNAL, 2006, 6 (02) :434-440