Eisenstein cohomology and the construction of p-adic analytic L-functions

被引:7
作者
Mahnkopf, J
机构
[1] Max Planck Inst Math, D-53072 Bonn, Germany
[2] Hebrew Univ Jerusalem, Edmund Landau Ctr, IL-91905 Jerusalem, Israel
[3] Univ Paris Sud, Orsay, France
关键词
automorphic representations and L-functions; cohomology of arithmetic groups; denominators of Eisenstein classes; p-adic integration;
D O I
10.1023/A:1026569231434
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let pi be a cuspidal automorphic representation of GL(3)(A(Q)), unramified at p and of cohomological type at infinity. We construct p-adic L-functions, which interpolate the critical values of L(pi, s) and which satisfy a logarithmic growth condition. We obtain these functions as p-adic Mellin transforms of certain distributions mu (pi) on Z(p)* having values in some fixed number field and which are of moderate growth. In the p-ordinary case we obtain the bound \mu (pi)(U)\(p) less than or equal to \mu (Haar)(U)\(p) for open subsets U less than or equal to Z(p)*, where mu (Haar) denotes the invariant distribution on Z(p)*.
引用
收藏
页码:253 / 304
页数:52
相关论文
共 26 条
[1]   P-ADIC L-FUNCTIONS FOR GL(2N) [J].
ASH, A ;
GINZBURG, D .
INVENTIONES MATHEMATICAE, 1994, 116 (1-3) :27-73
[2]   SOME RESULTS OF ATKIN AND LEHNER [J].
CASSELMAN, W .
MATHEMATISCHE ANNALEN, 1973, 201 (04) :301-314
[3]  
Clozel L., 1990, PERSPECTIVES MATH, V10, P77
[4]  
FULTON W., 1991, GRAD TEXTS MATH, V129
[5]  
Gelbart S., 1988, Perspect. Math., V6
[6]  
GELFAND IM, 1975, LIE GROUPS THEIR RES
[7]   EISENSTEIN COHOMOLOGY OF ARITHMETIC GROUPS - THE CASE GL2 [J].
HARDER, G .
INVENTIONES MATHEMATICAE, 1987, 89 (01) :37-118
[8]  
HARDER G, 1987, UNPUB KOHOMOLOGIE AR
[9]  
Jacquart J., 1976, Bulletin du centre d'histoire economique et sociale de la region lyonnaise, V3, P1
[10]   RANKIN-SELBERG CONVOLUTIONS [J].
JACQUET, H ;
PIATETSKIISHAPIRO, II ;
SHALIKA, JA .
AMERICAN JOURNAL OF MATHEMATICS, 1983, 105 (02) :367-464