The neural architecture of language: Integrative modeling converges on predictive processing

被引:229
作者
Schrimpf, Martin [1 ,2 ,3 ]
Blank, Idan Asher [1 ,4 ]
Tuckute, Greta [1 ,2 ]
Kauf, Carina [1 ,2 ]
Hosseini, Eghbal A. [1 ,2 ]
Kanwisher, Nancy [1 ,2 ,3 ]
Tenenbaum, Joshua B. [1 ,3 ]
Fedorenko, Evelina [1 ,2 ]
机构
[1] MIT, Dept Brain & Cognit Sci, Cambridge, MA 02139 USA
[2] MIT, McGovem Inst Brain Res, Cambridge, MA 02139 USA
[3] MIT, Ctr Brains Minds & Machines, Cambridge, MA 02139 USA
[4] Univ Calif Los Angeles, Dept Psychol, Los Angeles, CA 90095 USA
关键词
deep learning; computational neuroscience; language comprehension; neural recordings (fMRI and ECoG);   artificial neural networks; INFORMATION; NETWORK; BRAIN; REPRESENTATIONS; COMPREHENSION; DISSOCIATION; CONSTRAINTS; PRINCIPLES; RESPONSES; TRACKING;
D O I
10.1073/pnas.2105646118
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The neuroscience of perception has recently been revolutionized with an integrative modeling approach in which computation, brain function, and behavior are linked across many datasets and many computational models. By revealing trends across models, this approach yields novel insights into cognitive and neural mechanisms in the target domain. We here present a systematic study taking this approach to higher-level cognition: human language processing, our species' signature cognitive skill. We find that the most powerful "transformer" models predict nearly 100% of explainable variance in neural responses to sentences and generalize across different datasets and imaging modalities (functional MRI and electrocorticography). Models' neural fits ("brain score") and fits to behavioral responses are both strongly correlated with model accuracy on the next-word prediction task (but not other language tasks). Model architecture appears to substantially contribute to neural fit. These results provide computationally explicit evidence that predictive processing fundamentally shapes the language comprehension mechanisms in the human brain.
引用
收藏
页数:12
相关论文
共 165 条
[1]   Incremental interpretation at verbs: restricting the domain of subsequent reference [J].
Altmann, GTM ;
Kamide, Y .
COGNITION, 1999, 73 (03) :247-264
[2]  
[Anonymous], 2015, Advances in neural information processing systems
[3]  
[Anonymous], 2008, P 2008 C EMPIRICAL M, DOI DOI 10.3115/1613715.1613749
[4]  
[Anonymous], 2017, ARXIV
[5]  
[Anonymous], 2016, ARXIV PREPRINT ARXIV
[6]  
Arora S, 2018, PR MACH LEARN RES, V80
[7]   A map of object space in primate inferotemporal cortex [J].
Bao, Pinglei ;
She, Liang ;
McGill, Mason ;
Tsao, Doris Y. .
NATURE, 2020, 583 (7814) :103-+
[8]   NEUROSCIENCE Neural population control via deep image synthesis [J].
Bashivan, Pouya ;
Kar, Kohitij ;
DiCarlo, James J. .
SCIENCE, 2019, 364 (6439) :453-+
[9]   Canonical Microcircuits for Predictive Coding [J].
Bastos, Andre M. ;
Usrey, W. Martin ;
Adams, Rick A. ;
Mangun, George R. ;
Fries, Pascal ;
Friston, Karl J. .
NEURON, 2012, 76 (04) :695-711
[10]   Voxel-based lesion-symptom mapping [J].
Bates, E ;
Wilson, SM ;
Saygin, AP ;
Dick, F ;
Sereno, MI ;
Knight, RT ;
Dronkers, NF .
NATURE NEUROSCIENCE, 2003, 6 (05) :448-450