Anticipated cell lines selection in bioprocess scale-up through machine learning on metabolomics dynamics

被引:7
作者
Barberi, Gianmarco [1 ]
Benedetti, Antonio [3 ]
Diaz-Fernandez, Paloma [2 ]
Finka, Gary [2 ]
Bezzo, Fabrizio [1 ]
Barolo, Massimiliano [1 ]
Facco, Pierantonio [1 ]
机构
[1] CAPE Lab Comp Aided Proc Engn Lab, I-35138 Padua, Italy
[2] GlaxoSmithKline R&D, Biopharm Proc Res, Stevenage, Herts, England
[3] GlaxoSmithKline R&D, Proc Engn & Analyt, Stevenage, Herts, England
关键词
biopharmaceutical development; scale-up; monoclonal antibodies; data analytics; multivariate statistics; metabolomics; PARTIAL LEAST-SQUARES; HIGH-THROUGHPUT; REGRESSION;
D O I
10.1016/j.ifacol.2021.08.223
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The development of biopharmaceutical therapeutics, such as monoclonal antibodies, requires the testing of several cell lines at different development scales and the selection of the high performing cell lines which allow meeting the desired quality attributes of the product. In this context, data analytics, which is extremely useful for a better process understanding and a faster scale-up, can be used to understand the relation between biological information, such as cell metabolism, and process productivity. This study shows that monoclonal antibodies end-point titer can be estimated in the early stages of the industrial product development for cell line selection using information on cell metabolism dynamics This allows the anticipated identification of the high-performing cell lines, and a better understanding of the relationships between the time evolution of both the metabolic information and the product titer. Copyright (C) 2021 The Authors.
引用
收藏
页码:85 / 90
页数:6
相关论文
共 19 条
[1]   Use of the bootstrap and permutation methods for a more robust variable importance in the projection metric for partial least squares regression [J].
Afanador, N. L. ;
Tran, T. N. ;
Buydens, L. M. C. .
ANALYTICA CHIMICA ACTA, 2013, 768 :49-56
[2]   Model-based approach for predicting the impact of genetic modifications on product yield in biopharmaceutical manufacturing-Application to influenza vaccine production [J].
Duvigneau, Stefanie ;
Duerr, Robert ;
Laske, Tanja ;
Bachmann, Mandy ;
Dostert, Melanie ;
Kienle, Achim .
PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (06)
[3]  
Eriksson L., 2006, MULTI AND MEGAVARIAT, V2nd
[4]   Using data analytics to accelerate biopharmaceutical process scale-up [J].
Facco, Pierantonio ;
Zomer, Simeone ;
Rowland-Jones, Ruth C. ;
Marsh, Douglas ;
Diaz-Fernandez, Paloma ;
Finka, Gary ;
Bezzo, Fabrizio ;
Barolo, Massimiliano .
BIOCHEMICAL ENGINEERING JOURNAL, 2020, 164
[5]  
Food and Drug Administration, 2004, GUID IND PATA FRAM I
[6]   Complementary NAD+replacement strategies fail to functionally protect dystrophin-deficient muscle [J].
Frederick, David W. ;
McDougal, Alan V. ;
Semenas, Melisa ;
Vappiani, Johanna ;
Nuzzo, Andrea ;
Ulrich, John C. ;
Becherer, J. David ;
Preugschat, Frank ;
Stewart, Eugene L. ;
Sevin, Daniel C. ;
Kramer, H. Fritz .
SKELETAL MUSCLE, 2020, 10 (01)
[7]   High-Throughput, Accurate Mass Metabolome Profiling of Cellular Extracts by Flow Injection - Time-of-Flight Mass Spectrometry [J].
Fuhrer, Tobias ;
Heer, Dominik ;
Begemann, Boris ;
Zamboni, Nicola .
ANALYTICAL CHEMISTRY, 2011, 83 (18) :7074-7080
[8]   PARTIAL LEAST-SQUARES REGRESSION - A TUTORIAL [J].
GELADI, P ;
KOWALSKI, BR .
ANALYTICA CHIMICA ACTA, 1986, 185 :1-17
[9]   Supervision of fed-batch fermentations [J].
Gregersen, L ;
Jorgensen, SB .
CHEMICAL ENGINEERING JOURNAL, 1999, 75 (01) :69-76
[10]   Challenges and opportunities in biopharmaceutical manufacturing control [J].
Hong, Moo Sun ;
Severson, Kristen A. ;
Jiang, Mo ;
Lu, Amos E. ;
Love, J. Christopher ;
Braatz, Richard D. .
COMPUTERS & CHEMICAL ENGINEERING, 2018, 110 :106-114