On Hyers-Ulam stability of the generalized Cauchy and Wilson equations

被引:0
|
作者
Elhoucien, E [1 ]
Mohamed, A
机构
[1] Univ Ibnou Zohr, Fac Sci, Dept Math, Agadir, Morocco
[2] Univ Cadi Ayyad, Fac Sci Semlalia, Dept Math, Marrakech, Morocco
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2005年 / 66卷 / 3-4期
关键词
topological group; complex measure; Cauchy equation; Wilson equation; d'Alembert equation; mu-spherical function; Hyers-Ulam stability; superstability;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a topological group, let mu be a complex measure with compact support and let sigma be a continuous involution of G. In this paper the Hyers-Ulam stability of the functional inequalities vertical bar integral(G)f(xty)d mu(t) - g(x)f(y)vertical bar <= epsilon(x), vertical bar integral(G)f(xty)d mu(t) + integral(G)f(xt sigma(y))d mu(t) - 2f(x)g(y)vertical bar <= epsilon(y), x,y is an element of G, shall be investigated, where f,g : G -> C and epsilon : G -> R+ are continuous functions.
引用
收藏
页码:283 / 301
页数:19
相关论文
共 50 条