共 1 条
A Simplified and Efficient Method for Himar-1 Transposon Sequencing in Bacteria, Demonstrated by Creation and Analysis of a Saturated Transposon-Mutant Library in Mycobacterium abscessus
被引:13
|作者:
Foreman, Mark
[1
]
Gershoni, Moran
[2
]
Barkan, Daniel
[1
]
机构:
[1] Hebrew Univ Jerusalem, Robert H Smith Fac Agr Food & Environm, Koret Sch Vet Med, Rehovot, Israel
[2] Agr Res Org, Dept Ruminant Sci, Inst Anim Sci, Volcani Ctr, Rishon Leziyyon, Israel
来源:
关键词:
transposon;
genomics;
bacterial genetics;
Mycobacterium abscessus;
bioinformatics;
mycobacteria;
transposon library;
FITNESS;
D O I:
10.1128/mSystems.00976-20
中图分类号:
Q93 [微生物学];
学科分类号:
071005 ;
100705 ;
摘要:
We present a technically simple, easy-to-perform method for generating the genomic libraries for Himar-1 transposon site sequencing (Tn-seq). In addition to being simpler than present methods in the technical aspect, it also allows more robust and straightforward identification of the insertion site, by generating a longer sequence surrounding the insertion TA in the genome. The method makes Tn-seq more user-friendly and accessible to laboratories with more-limited bioinformatic resources. Finally, we created a saturated transposon-mutant library in Mycobacterium abscessus and demonstrated the usefulness of the method in analysis of genes involved in colony morphology, as well as in analysis of the whole Tn-mutant library, with identification of over 8,000 unique mutants. IMPORTANCE Transposon insertion sequencing is a powerful tool, but many researchers are discouraged by the apparent technical complexity of preparing the genomic library for deep sequencing and by the complicated computational analysis needed for insertion site identification. Our proposed method makes the preparation of the library easy and straightforward, relying on well-known molecular biology techniques. In addition, the results obtained from the deep sequencing are easily analyzed in terms of transposon insertion site identification, placing library preparation and analysis within the reach of more researchers in the microbiology community, including those with less computational and bioinformatic resources and experience. This is demonstrated by analysis of the most saturated Tn-mutant library created to date in the emerging pathogen Mycobacterium abscessus.
引用
收藏
页数:11
相关论文