Exponentiated power Lindley power series class of distributions: Theory and applications

被引:15
作者
Alizadeh, M. [1 ]
Bagheri, S. F. [2 ]
Samani, E. Bahrami [3 ]
Ghobadi, S. [4 ]
Nadarajah, S. [5 ]
机构
[1] Stat Ctr Iran, Branch Mazandaran, Tehran 141556133, Iran
[2] Islamic Azad Univ, Yadegar E Imam Khomeini RAH Shahr E Rey Branch, Dept Stat, Coll Basic Sci, Tehran, Iran
[3] Shahid Beheshti Univ, Dept Stat, Tehran, Iran
[4] Islamic Azad Univ, Qaemshahr Branch, Dept Math, Qaemshahr, Iran
[5] Univ Manchester, Sch Math, Manchester, Lancs, England
关键词
Hazard rate function; Maximum likelihood estimation; Model selection criteria; Power series distributions; Residual life function; 4-PARAMETER LIFETIME DISTRIBUTION; DECREASING FAILURE RATE; MEAN RESIDUAL LIFE; POISSON DISTRIBUTION; WEIBULL FAMILY;
D O I
10.1080/03610918.2017.1350270
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a new four-parameter generalization of the exponentiated power Lindley (EPL) distribution, called the exponentiated power Lindley power series (EPLPS) distribution. The new distribution arises on a latent complementary risks scenario, in which the lifetime associated with a particular risk is not observable; rather, we observe only the minimum lifetime value among all risks. The distribution exhibits a variety of bathtub-shaped hazard rate functions. It contains as particular cases several lifetime distributions. Various properties of the distribution are investigated including closed-form expressions for the density function, cumulative distribution function, survival function, hazard rate function, the rth raw moment, and also the moments of order statistics. Expressions for the Renyi and Shannon entropies are also given. Moreover, we discuss maximum likelihood estimation and provide formulas for the elements of the Fisher information matrix. Finally, two data applications are given showing flexibility and potentiality of the EPLPS distribution.
引用
收藏
页码:2499 / 2531
页数:33
相关论文
共 47 条
[1]   HOW TO IDENTIFY A BATHTUB HAZARD RATE [J].
AARSET, MV .
IEEE TRANSACTIONS ON RELIABILITY, 1987, 36 (01) :106-108
[2]   A new four-parameter lifetime distribution [J].
Alizadeh, Mojtaba ;
Bagheri, Seyyed Fazel ;
Alizadeh, Mohammad ;
Nadarajah, Saralees .
JOURNAL OF APPLIED STATISTICS, 2017, 44 (05) :767-797
[3]  
[Anonymous], 1993, Continuous Univariate Distributions, DOI DOI 10.1016/0167-9473(96)90015-8
[4]  
[Anonymous], 1998, ENCY STAT SCI
[5]  
Asgharzadeh A, 2014, KYBERNETIKA, V50, P142
[6]   Exponentiated power Lindley distribution [J].
Ashour, Samir K. ;
Eltehiwy, Mahmoud A. .
JOURNAL OF ADVANCED RESEARCH, 2015, 6 (06) :895-905
[7]   The generalized modified Weibull power series distribution: Theory and applications [J].
Bagheri, S. F. ;
Samani, E. Bahrami ;
Ganjali, M. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 94 :136-160
[8]   An extended Lindley distribution [J].
Bakouch, Hassan S. ;
Al-Zahrani, Bander M. ;
Al-Shomrani, Ali A. ;
Marchi, Vitor A. A. ;
Louzada, Francisco .
JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2012, 41 (01) :75-85
[9]   On some lifetime distributions with decreasing failure rate [J].
Chahkandi, M. ;
Ganjali, M. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (12) :4433-4440
[10]   On the Lambert W function [J].
Corless, RM ;
Gonnet, GH ;
Hare, DEG ;
Jeffrey, DJ ;
Knuth, DE .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 5 (04) :329-359