Plant endophytes promote growth and alleviate salt stress in Arabidopsis thaliana

被引:102
|
作者
Fan, Di [1 ]
Subramanian, Sowmyalakshmi [1 ]
Smith, Donald L. [1 ]
机构
[1] McGill Univ, Dept Plant Sci, Macdonald Campus,21111 Lakeshore Rd, Ste Anne De Bellevue, PQ H9X 3V9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
BACTERIAL ENDOPHYTES; OXIDATIVE STRESS; TOLERANCE; DROUGHT; SYSTEM; RHIZOBACTERIA; WATER; L; PEROXIDASE; PHYSIOLOGY;
D O I
10.1038/s41598-020-69713-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Plant growth promoting rhizobacteria (PGPR) are a functionally diverse group of microbes having immense potential as biostimulants and stress alleviators. Their exploitation in agro-ecosystems as an eco-friendly and cost-effective alternative to traditional chemical inputs may positively affect agricultural productivity and environmental sustainability. The present study describes selected rhizobacteria, from a range of origins, having plant growth promoting potential under controlled conditions. A total of 98 isolates (ectophytic or endophytic) from various crop and uncultivated plants were screened, out of which four endophytes (n, L, K and Y) from Phalaris arundinacea, Solanum dulcamara, Scorzoneroides autumnalis, and Glycine max, respectively, were selected in vitro for their vegetative growth stimulating effects on Arabidopsis thaliana Col-0 seedlings with regard to leaf surface area and shoot fresh weight. A 16S rRNA gene sequencing analysis of the strains indicated that these isolates belong to the genera Pseudomonas, Bacillus, Mucilaginibacter and Rhizobium. Strains were then further tested for their effects on abiotic stress alleviation under both Petri-plate and pot conditions. Results from Petri-dish assay indicated strains L, K and Y alleviated salt stress in Arabidopsis seedlings, while strains K and Y conferred increases in fresh weight and leaf area under osmotic stress. Results from subsequent in vivo trials indicated all the isolates, especially strains L, K and Y, distinctly increased A. thaliana growth under both normal and high salinity conditions, as compared to control plants. The activity of antioxidant enzymes (ascorbate peroxidase, catalase and peroxidase), proline content and total antioxidative capacity also differed in the inoculated A. thaliana plants. Furthermore, a study on spatial distribution of the four strains, using either conventional Petri-plate counts or GFP-tagged bacteria, indicated that all four strains were able to colonize the endosphere of A. thaliana root tissue. Thus, the study revealed that the four selected rhizobacteria are good candidates to be explored as plant growth stimulators, which also possess salt stress mitigating property, partially by regulating osmolytes and antioxidant enzymes. Moreover, the study is the first report of Scorzoneroides autumnalis (fall dandelion) and Solanum dulcamara (bittersweet) associated endophytes with PGP effects.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Salt stress response in Arabidopsis thaliana plants with defective jasmonate signaling
    T. O. Yastreb
    Yu. E. Kolupaev
    N. V. Shvidenko
    A. A. Lugovaya
    A. P. Dmitriev
    Applied Biochemistry and Microbiology, 2015, 51 : 451 - 454
  • [42] OsBTBZ1 Confers Salt Stress Tolerance in Arabidopsis thaliana
    Saputro, Triono B.
    Jakada, Bello H.
    Chutimanukul, Panita
    Comai, Luca
    Buaboocha, Teerapong
    Chadchawan, Supachitra
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (19)
  • [43] The enhancement of salt stress tolerance by salicylic acid pretreatment in Arabidopsis thaliana
    Yu, L-L
    Liu, Y.
    Zhu, F.
    Geng, X-X
    Yang, Y.
    He, Z-Q
    Xu, F.
    BIOLOGIA PLANTARUM, 2020, 64 : 150 - 158
  • [44] AtPHB2 regulates salt stress response in Arabidopsis thaliana
    Chang, Xu
    Zhu, Guoqing
    Chen, Shiya
    Sun, Dan
    He, Hao
    Li, Guoliang
    Xu, Yang
    Ren, Ziqi
    Xu, Chang
    Jin, Shumei
    PLANT GROWTH REGULATION, 2021, 94 (01) : 23 - 32
  • [45] Early photosynthetic response of Arabidopsis thaliana to temperature and salt stress conditions
    A. Martínez-Peñalver
    E. Graña
    M. J. Reigosa
    A. M. Sánchez-Moreiras
    Russian Journal of Plant Physiology, 2012, 59 : 640 - 647
  • [46] Salt stress response in Arabidopsis thaliana plants with defective jasmonate signaling
    Yastreb, T. O.
    Kolupaev, Yu. E.
    Shvidenko, N. V.
    Lugovaya, A. A.
    Dmitriev, A. P.
    APPLIED BIOCHEMISTRY AND MICROBIOLOGY, 2015, 51 (04) : 451 - 454
  • [47] Efficient rhizobacteria promote growth and alleviate NaCl-induced stress in the plant species Sulla carnosa
    Hmaeid, Nizar
    Wali, Mariem
    Metoui-Ben Mahmoud, Ouissal
    Pueyo, Jose J.
    Ghnaya, Tahar
    Abdelly, Chedly
    APPLIED SOIL ECOLOGY, 2019, 133 : 104 - 113
  • [48] Plant array chip for the germination and growth screening of Arabidopsis thaliana
    Park, Youn-Hee
    Lee, Nayoung
    Choi, Giltsu
    Park, Je-Kyun
    LAB ON A CHIP, 2017, 17 (18) : 3071 - 3077
  • [49] Indigenous arbuscular mycorrhizal fungi can alleviate salt stress and promote growth of cotton and maize in saline fields
    Shenglin Liu
    Xiuli Guo
    Gu Feng
    Baidengsha Maimaitiaili
    Jialin Fan
    Xinhua He
    Plant and Soil, 2016, 398 : 195 - 206
  • [50] Plant growth-promoting rhizobacterium Pseudomonas PS01 induces salt tolerance in Arabidopsis thaliana
    Thanh Nguyen Chu
    Bao Thi Hoai Tran
    Le Van Bui
    Minh Thi Thanh Hoang
    BMC Research Notes, 12