Coherent Two-Dimensional Nanoscopy

被引:202
作者
Aeschlimann, Martin [2 ,3 ]
Brixner, Tobias [1 ,4 ]
Fischer, Alexander [2 ,3 ]
Kramer, Christian [1 ]
Melchior, Pascal [2 ,3 ]
Pfeiffer, Walter [5 ]
Schneider, Christian [2 ,3 ]
Strueber, Christian [5 ]
Tuchscherer, Philip [1 ]
Voronine, Dmitri V. [5 ]
机构
[1] Univ Wurzburg, Inst Phys & Theoret Chem, D-97074 Wurzburg, Germany
[2] Tech Univ Kaiserslautern, Fachbereich Phys, D-67663 Kaiserslautern, Germany
[3] Tech Univ Kaiserslautern, Res Ctr OPTIMAS, D-67663 Kaiserslautern, Germany
[4] Rontgen Res Ctr Complex Mat Syst, D-97074 Wurzburg, Germany
[5] Univ Bielefeld, Fak Phys, D-33615 Bielefeld, Germany
关键词
2-PHOTON PHOTOEMISSION; SPECTROSCOPY; NANOSTRUCTURES; LIMIT;
D O I
10.1126/science.1209206
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We introduce a spectroscopic method that determines nonlinear quantum mechanical response functions beyond the optical diffraction limit and allows direct imaging of nanoscale coherence. In established coherent two-dimensional (2D) spectroscopy, four-wave-mixing responses are measured using three ingoing waves and one outgoing wave; thus, the method is diffraction-limited in spatial resolution. In coherent 2D nanoscopy, we use four ingoing waves and detect the final state via photoemission electron microscopy, which has 50-nanometer spatial resolution. We recorded local nanospectra from a corrugated silver surface and observed subwavelength 2D line shape variations. Plasmonic phase coherence of localized excitations persisted for about 100 femtoseconds and exhibited coherent beats. The observations are best explained by a model in which coupled oscillators lead to Fano-like resonances in the hybridized dark-and bright-mode response.
引用
收藏
页码:1723 / 1726
页数:4
相关论文
共 29 条
[21]   Femtosecond light transmission and subradiant damping in plasmonic crystals [J].
Ropers, C ;
Park, DJ ;
Stibenz, G ;
Steinmeyer, G ;
Kim, J ;
Kim, DS ;
Lienau, C .
PHYSICAL REVIEW LETTERS, 2005, 94 (11)
[22]   Time-resolved two photon photoemission electron microscopy [J].
Schmidt, O ;
Bauer, M ;
Wiemann, C ;
Porath, R ;
Scharte, M ;
Andreyev, O ;
Schönhense, G ;
Aeschlimann, M .
APPLIED PHYSICS B-LASERS AND OPTICS, 2002, 74 (03) :223-227
[23]   Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide [J].
Shim, Sang-Hee ;
Strasfeld, David B. ;
Ling, Yun L. ;
Zanni, Martin T. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (36) :14197-14202
[24]   Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation [J].
Tekavec, Patrick F. ;
Lott, Geoffrey A. ;
Marcus, Andrew H. .
JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (21)
[25]   Femtosecond phase-coherent two-dimensional spectroscopy [J].
Tian, PF ;
Keusters, D ;
Suzaki, Y ;
Warren, WS .
SCIENCE, 2003, 300 (5625) :1553-1555
[26]   Response theory for time-resolved second-harmonic generation and two-photon photoemission [J].
Timm, C ;
Bennemann, KH .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (04) :661-694
[27]   Femtosecond pulse shaping using spatial light modulators [J].
Weiner, AM .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2000, 71 (05) :1929-1960
[28]   Photoemission from localized surface plasmons in fractal metal nanostructures [J].
Word, R. C. ;
Dornan, T. ;
Koenenkamp, R. .
APPLIED PHYSICS LETTERS, 2010, 96 (25)
[29]   Plasmon-induced transparency in metamaterials [J].
Zhang, Shuang ;
Genov, Dentcho A. ;
Wang, Yuan ;
Liu, Ming ;
Zhang, Xiang .
PHYSICAL REVIEW LETTERS, 2008, 101 (04)