Orbital stability of solitary waves for a shallow water equation

被引:165
作者
Constantin, A
Molinet, L
机构
[1] Lund Univ, Dept Math, S-22100 Lund, Sweden
[2] Univ Paris 13, Dept Math, Inst Galilee, F-93430 Villetaneuse, France
来源
PHYSICA D | 2001年 / 157卷 / 1-2期
关键词
orbital stability; solitary waves; shal ow water equation; variational methods; minimization problem;
D O I
10.1016/S0167-2789(01)00298-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the orbital stability of the solitary waves for a shallow water equation by means of variational methods, considering a minimization problem with an appropriate constraint. (C) 2001 Published by Elsevier Science B.V.
引用
收藏
页码:75 / 89
页数:15
相关论文
共 33 条
[1]   NON-LINEAR EVOLUTION EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF PAINLEVE TYPE [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
LETTERE AL NUOVO CIMENTO, 1978, 23 (09) :333-338
[2]  
[Anonymous], ANN I H POINCARE ANA
[4]   MODEL EQUATIONS FOR LONG WAVES IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB ;
BONA, JL ;
MAHONY, JJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1220) :47-+
[5]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[6]  
Camassa R., 1994, Adv. Appl. Mech., V31, P1, DOI DOI 10.1016/S0065-2156(08)70254-0
[7]   ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS [J].
CAZENAVE, T ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) :549-561
[8]  
Constantin A, 2000, COMMUN PUR APPL MATH, V53, P603
[9]   Wave breaking for nonlinear nonlocal shallow water equations [J].
Constantin, A ;
Escher, J .
ACTA MATHEMATICA, 1998, 181 (02) :229-243
[10]  
Constantin A, 1999, COMMUN PUR APPL MATH, V52, P949, DOI 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO