Fatty acid metabolism and acyl-CoA synthetases in the liver-gut axis

被引:23
作者
Ma, Yunxia [1 ]
Nenkov, Miljana [1 ]
Chen, Yuan [1 ]
Press, Adrian T. [2 ,3 ]
Kaemmerer, Elke [4 ]
Gassler, Nikolaus [1 ]
机构
[1] Friedrich Schiller Univ Jena, Jena Univ Hosp, Inst Forens Med, Sect Pathol, Klinikum 1, D-07747 Jena, Germany
[2] Friedrich Schiller Univ Jena, Dept Anesthesiol & Intens Care Med, Jena Univ Hosp, D-07747 Jena, Germany
[3] Friedrich Schiller Univ Jena, Jena Univ Hosp, Ctr Sepsis Control & Care, D-07747 Jena, Germany
[4] Friedrich Schiller Univ Jena, Jena Univ Hosp, Dept Pediat, D-07747 Jena, Germany
关键词
Long-chain fatty acids; Short-chain fatty acids; Acyl-CoA synthetases; Microbiota; Liver-gut axis; ABNORMAL LIPID-METABOLISM; INTESTINAL BACTERIAL OVERGROWTH; ACETYL-COA; HEPATOMA-CELLS; COLON-CANCER; MOLECULAR CHARACTERIZATION; GLUTAMINE-METABOLISM; INSULIN SENSITIVITY; TRANSPORT PROTEIN; BINDING PROTEINS;
D O I
10.4254/wjh.v13.i11.1512
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Fatty acids are energy substrates and cell components which participate in regulating signal transduction, transcription factor activity and secretion of bioactive lipid mediators. The acyl-CoA synthetases (ACSs) family containing 26 family members exhibits tissue-specific distribution, distinct fatty acid substrate preferences and diverse biological functions. Increasing evidence indicates that dysregulation of fatty acid metabolism in the liver-gut axis, designated as the bidirectional relationship between the gut, microbiome and liver, is closely associated with a range of human diseases including metabolic disorders, inflammatory disease and carcinoma in the gastrointestinal tract and liver. In this review, we depict the role of ACSs in fatty acid metabolism, possible molecular mechanisms through which they exert functions, and their involvement in hepatocellular and colorectal carcinoma, with particular attention paid to long-chain fatty acids and small-chain fatty acids. Additionally, the liver-gut communication and the liver and gut intersection with the microbiome as well as diseases related to microbiota imbalance in the liver-gut axis are addressed. Moreover, the development of potentially therapeutic small molecules, proteins and compounds targeting ACSs in cancer treatment is summarized.
引用
收藏
页码:1512 / 1533
页数:22
相关论文
共 201 条
[1]   Triglyceride Metabolism in the Liver [J].
Alves-Bezerra, Michele ;
Cohen, David E. .
COMPREHENSIVE PHYSIOLOGY, 2018, 8 (01) :1-22
[2]   SLC27 fatty acid transport proteins [J].
Anderson, Courtney M. ;
Stahl, Andreas .
MOLECULAR ASPECTS OF MEDICINE, 2013, 34 (2-3) :516-528
[3]  
Arias-Barrau E, 2009, METHODS MOL BIOL, V580, P233, DOI 10.1007/978-1-60761-325-1_13
[4]   Enterotypes of the human gut microbiome [J].
Arumugam, Manimozhiyan ;
Raes, Jeroen ;
Pelletier, Eric ;
Le Paslier, Denis ;
Yamada, Takuji ;
Mende, Daniel R. ;
Fernandes, Gabriel R. ;
Tap, Julien ;
Bruls, Thomas ;
Batto, Jean-Michel ;
Bertalan, Marcelo ;
Borruel, Natalia ;
Casellas, Francesc ;
Fernandez, Leyden ;
Gautier, Laurent ;
Hansen, Torben ;
Hattori, Masahira ;
Hayashi, Tetsuya ;
Kleerebezem, Michiel ;
Kurokawa, Ken ;
Leclerc, Marion ;
Levenez, Florence ;
Manichanh, Chaysavanh ;
Nielsen, H. Bjorn ;
Nielsen, Trine ;
Pons, Nicolas ;
Poulain, Julie ;
Qin, Junjie ;
Sicheritz-Ponten, Thomas ;
Tims, Sebastian ;
Torrents, David ;
Ugarte, Edgardo ;
Zoetendal, Erwin G. ;
Wang, Jun ;
Guarner, Francisco ;
Pedersen, Oluf ;
de Vos, Willem M. ;
Brunak, Soren ;
Dore, Joel ;
Weissenbach, Jean ;
Ehrlich, S. Dusko ;
Bork, Peer .
NATURE, 2011, 473 (7346) :174-180
[5]   Rosiglitazone inhibits acyl-CoA synthetase activity and fatty acid partitioning to diacylglycerol and triacylglycerol via a peroxisome proliferator-activated receptor-γ-independent mechanism in human arterial smooth muscle cells and macrophages [J].
Askari, Bardia ;
Kanter, Jenny E. ;
Sherrid, Ashley M. ;
Golej, Deidre L. ;
Bender, Andrew T. ;
Liu, Joey ;
Hsueh, Willa A. ;
Beavo, Joseph A. ;
Coleman, Rosalind A. ;
Bornfeldt, Karin E. .
DIABETES, 2007, 56 (04) :1143-1152
[6]   Liver fatty acid-binding protein gene ablation inhibits branched-chain fatty acid metabolism in cultured primary hepatocytes [J].
Atshaves, BP ;
McIntosh, AM ;
Lyuksyutova, OI ;
Zipfel, W ;
Webb, WW ;
Schroeder, F .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (30) :30954-30965
[7]   Gut microbiota-derived propionate reduces cancer cell proliferation in the liver [J].
Bindels, L. B. ;
Porporato, P. ;
Dewulf, E. M. ;
Verrax, J. ;
Neyrinck, A. M. ;
Martin, J. C. ;
Scott, K. P. ;
Calderon, P. Buc ;
Feron, O. ;
Muccioli, G. G. ;
Sonveaux, P. ;
Cani, P. D. ;
Delzenne, N. M. .
BRITISH JOURNAL OF CANCER, 2012, 107 (08) :1337-1344
[8]   Stratification of Hepatocellular Carcinoma Patients Based on Acetate Utilization [J].
Bjornson, Elias ;
Mukhopadhyay, Bani ;
Asplund, Anna ;
Pristovsek, Nusa ;
Cinar, Resat ;
Romeo, Stefano ;
Uhlen, Mathias ;
Kunos, George ;
Nielsen, Jens ;
Mardinoglu, Adil .
CELL REPORTS, 2015, 13 (09) :2014-2026
[9]   Fatty acid transport proteins: targeting FATP2 as a gatekeeper involved in the transport of exogenous fatty acids [J].
Black, Paul N. ;
Ahowesso, Constance ;
Montefusco, David ;
Saini, Nipun ;
DiRusso, Concetta C. .
MEDCHEMCOMM, 2016, 7 (04) :612-622
[10]   Transmembrane movement of exogenous long-chain fatty acids: Proteins, enzymes, and vectorial esterification [J].
Black, PN ;
DiRusso, CC .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2003, 67 (03) :454-+