The Convergence of Borel Probability Measures and Its Applications to Topological Dynamics

被引:0
作者
Chen, Zhijing [1 ]
Liu, Xin [2 ]
机构
[1] Guangdong Polytech Normal Univ, Sch Math & Syst Sci, Guangzhou 510665, Peoples R China
[2] Guangdong Univ Educ, Dept Math, Guangzhou 510303, Peoples R China
基金
中国国家自然科学基金;
关键词
Convergence of probability measures; Quasi-regular points; Uniquely ergodic systems; Small-boundary property;
D O I
10.1007/s40840-019-00790-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a topological characterization of the convergence of Borel probability measures on compact metric spaces and apply this result to topological dynamics.
引用
收藏
页码:2077 / 2086
页数:10
相关论文
共 8 条
[1]  
[Anonymous], 2000, An introduction to ergodic theory
[2]  
Einsiedler M, 2010, GRADUATE TEXTS MATH
[3]   Mean topological dimension [J].
Lindenstrauss, E ;
Weiss, B .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 115 (1) :1-24
[4]  
Lindenstrauss E, 1999, PUBL MATH, P227
[5]   ERGODIC SETS [J].
OXTOBY, JC .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 58 (02) :116-136
[6]   CAN ONE ALWAYS LOWER TOPOLOGICAL-ENTROPY [J].
SHUB, M ;
WEISS, B .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1991, 11 :535-546
[7]  
[王肖义 Wang Xiaoyi], 2013, [中国科学. 数学, Scientia Sinica Mathematica], V43, P1185
[8]  
Weiss B., 2000, Single Orbit Dynamics, p1083.37500