Hamiltonian symmetric groups and multiple periodic solutions of differential delay equations

被引:35
作者
Li, JB
He, XZ [1 ]
Liu, ZG
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[2] Kunming Univ Sci & Technol, Ctr Nonlinear Sci Studies, Kunming 650093, Peoples R China
[3] Inst Appl Math Yunnan Prov, Kunming 650093, Peoples R China
[4] Yunnan Univ, Dept Math, Kunming 650093, Peoples R China
关键词
differential-delay equations; symmetric groups; index; Hamiltonian systems; multiple periodic solutions;
D O I
10.1016/S0362-546X(97)00623-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:457 / 474
页数:18
相关论文
共 11 条
[1]   PERIODIC-SOLUTIONS OF ASYMPTOTICALLY LINEAR HAMILTONIAN-SYSTEMS [J].
AMANN, H ;
ZEHNDER, E .
MANUSCRIPTA MATHEMATICA, 1980, 32 (1-2) :149-189
[2]  
[Anonymous], 1985, SINGULARITIES GROUPS
[3]  
Ge W., 1994, Acta Appl. Math. Sinica, V17, P173
[4]   ORDINARY DIFFERENTIAL EQUATIONS WHICH YIELD PERIODIC-SOLUTIONS OF DIFFERENTIAL DELAY EQUATIONS [J].
KAPLAN, JL ;
YORKE, JA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 48 (02) :317-324
[5]  
LI J, PERIODIC SOLUTION SO
[6]  
LI J, IN PRESS NONLINEAR A
[7]  
LI J, PROOF GEN KAPLAN YOR
[8]  
Li J. B., 1994, The Theory and Applications of Generalized Hamilton System
[9]  
Mawhin J., 1989, CRITICAL POINT THEOR
[10]  
Meyer K. R., 1992, INTRO HAMILTONIAN DY