Distributed Optimization of All-in-one SVMs for Extreme Classfication

被引:0
作者
Kloft, Marius [1 ]
机构
[1] Univ Kaiserslautern, Kaiserslautern, Germany
来源
COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018) | 2018年
关键词
D O I
10.1145/3184558.3193137
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Training of multi-class or multi-label classification machines are embarrassingly parallelizable via the one-vs.-rest approach. However, training of all-in-one multi-class learning machines such as multinomial logistic regression or all-in-one multi-class SVMs (MC-SVMs) is not parallelizable out of the box. In my talk, I present optimization strategies to distribute the training of all-in-one multiclass SVMs over the classes, which makes them appealing for the use in extreme classification.
引用
收藏
页码:1899 / 1899
页数:1
相关论文
empty
未找到相关数据