Logic gates;
Stress;
Degradation;
Hot carriers;
Reliability;
Silicon;
Electric fields;
Split-STI;
LDMOS;
hot-carrier reliability;
SHALLOW-TRENCH-ISOLATION;
LDMOS;
DEGRADATION;
D O I:
10.1109/JEDS.2021.3128755
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
In this work, four kinds of lateral double-diffused MOS (LDMOS) devices with different split shallow trench isolation (STI) structures (Device A: LDMOS with traditional split-STI, Device B: LDMOS with slope-STI, Device C with step-STI and Device D with H-shape-STI) have been fabricated and the hot-carrier reliabilities also have been investigated due to the serious environment they are endured. The maximum bulk current (I-bmax) stress and the maximum gate voltage (V-gmax) stress have been carried out and the inner mechanism of device degradation have been investigated successfully. With the assistance of the T-CAD simulation tools, it is found that the main damage point locates at the STI conners with a mount of interface states generation, inducing serious degradation for these four devices. The Device D owns high hot-carrier reliability due to its special structure with narrow split-STI. The worst device is Device C because of the presence of extra STI damage point. Finally, a mechanism verification, the charge pumping (CP) method has been applied to better understand this work.