Hollow Bio-derived Polymer Nanospheres with Ordered Mesopores for Sodium-Ion Battery

被引:25
作者
Ai, Yan [1 ,2 ]
You, Yuxiu [3 ]
Wei, Facai [1 ,2 ]
Jiang, Xiaolin [1 ,2 ]
Han, Zhuolei [1 ,2 ]
Cui, Jing [1 ,2 ]
Luo, Hao [1 ,2 ]
Li, Yucen [1 ,2 ]
Xu, Zhixin [4 ]
Xu, Shunqi [5 ,6 ]
Yang, Jun [4 ]
Bao, Qinye [1 ,2 ]
Jing, Chengbin [1 ,2 ]
Fu, Jianwei [7 ]
Cheng, Jiangong [8 ]
Liu, Shaohua [1 ,2 ]
机构
[1] East China Normal Univ, Sch Phys & Elect Sci, State Key Lab Precis Spect, Shanghai 200241, Peoples R China
[2] East China Normal Univ, Sch Phys & Elect Sci, Dept Mat, Shanghai 200241, Peoples R China
[3] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[5] Tech Univ Dresden, Ctr Adv Elect Dresden Cfaed, D-01062 Dresden, Germany
[6] Tech Univ Dresden, Dept Chem & Food Chem, D-01062 Dresden, Germany
[7] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450052, Peoples R China
[8] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Transducer Technol, Shanghai 200050, Peoples R China
关键词
Self-assembly; Biomimetic synthesis; Mesoporous polymer; Ferric phytate; Sodium-ion battery; METAL-ORGANIC FRAMEWORKS; POROUS MATERIALS; ACID; CATALYST; SYSTEMS; HYBRID;
D O I
10.1007/s40820-020-0370-1
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Bio-inspired hierarchical self-assembly provides elegant and powerful bottom-up strategies for the creation of complex materials. However, the current self-assembly approaches for natural bio-compounds often result in materials with limited diversity and complexity in architecture as well as microstructure. Here, we develop a novel coordination polymerization-driven hierarchical assembly of micelle strategy, using phytic acid-based natural compounds as an example, for the spatially controlled fabrication of metal coordination bio-derived polymers. The resultant ferric phytate polymer nanospheres feature hollow architecture, ordered meso-channels of similar to 12 nm, high surface area of 401 m(2) g-(1,) and large pore volume of 0.53 cm(3) g(-1). As an advanced anode material, this bio-derivative polymer delivers a remarkable reversible capacity of 540 mAh g(-1) at 50 mA g(-1), good rate capability, and cycling stability for sodium-ion batteries. This study holds great potential of the design of new complex bio-materials with supramolecular chemistry.
引用
收藏
页数:11
相关论文
共 50 条
[41]   Interaction between Sodium and Dimethylacetamide As the Cause of Instability in the Operation of a Sodium-Ion Battery [J].
Vedenyapina, M. D. ;
Kulova, T. L. ;
Kudryashova, Yu. O. ;
Skundin, A. M. ;
Malyshev, O. R. ;
Glukhov, L. M. .
RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 94 (06) :1276-1279
[42]   A high-performance sodium-ion battery enhanced by macadamia shell derived hard carbon anode [J].
Zheng, Yuheng ;
Wang, Yuesheng ;
Lu, Yaxiang ;
Hu, Yong-Sheng ;
Li, Ju .
NANO ENERGY, 2017, 39 :489-498
[43]   Progress in Gel Polymer Electrolytes for Sodium-Ion Batteries [J].
Zheng, Jinyun ;
Li, Wenjie ;
Liu, Xinxin ;
Zhang, Jiawei ;
Feng, Xiangming ;
Chen, Weihua .
ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6 (04)
[44]   Self-chargeable sodium-ion battery for soft electronics [J].
Zhou, Dan ;
Xue, Liping ;
Wang, Long ;
Wang, Ning ;
Lau, Woon-Ming ;
Cao, Xia .
NANO ENERGY, 2019, 61 :435-441
[45]   From acorn to microporous carbon for sustainable sodium-ion battery [J].
Medina, Alejandro ;
Rubio, Saul ;
Lavela, Pedro ;
Tirado, Jose L. ;
Alcantara, R. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2025, 980
[46]   Cell design and chemistry of commercial sodium-ion battery cells [J].
Marangon, Vittorio ;
Bischof, Katharina ;
Regalado, Aislim Aracil ;
Keppeler, Miriam ;
Pogosova, Mariam ;
Wan, Mintao ;
Choi, Jaehoon ;
Fleischmann, Simon ;
Diemant, Thomas ;
Wohlfahrt-Mehrens, Margret ;
Hoelzle, Markus ;
Waldmann, Thomas ;
Bresser, Dominic .
JOURNAL OF POWER SOURCES, 2025, 634
[47]   Flower-like structure of SnS with N-doped carbon via polymer additive for lithium-ion battery and sodium-ion battery [J].
Wu, Che-Ya ;
Yang, Hao ;
Wu, Cheng-Yu ;
Duh, Jenq-Gong .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 750 :23-32
[48]   Chemical Grafting-derived N, P Co-doped Hollow Microporous Carbon Spheres for High-Performance Sodium-ion Battery Anodes [J].
Wang, Haijun ;
Lan, Jin-Le ;
Yuan, Haocheng ;
Luo, Shicheng ;
Huang, Yiqian ;
Yu, Yunhua ;
Cai, Qing ;
Yang, Xiaoping .
APPLIED SURFACE SCIENCE, 2020, 518 (518)
[49]   Hollow Structure VS2@Reduced Graphene Oxide (RGO) Architecture for Enhanced Sodium-Ion Battery Performance [J].
He, Xuexia ;
Qi, Haimei .
CHEMELECTROCHEM, 2020, 7 (01) :5-5
[50]   Study of Sodium-ion Battery Based on Sodium Vanadium Phosphate and Sodium Titanate at Low Temperatures [J].
Kulova, Tatiana ;
Skundin, Alexander ;
Chekannikov, Andrew ;
Novikova, Svetlana ;
Stenina, Irina ;
Kudryashovam, Yulia ;
Sinenko, Grigorii .
INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (02) :1451-1460