Preparation of conductive Cu1.5Mn1.5O4 and Mn3O4 spinet mixture powders as positive active materials in rechargeable Mg batteries operative at room temperature

被引:2
作者
Takemitsu, Hayato [1 ]
Hayashi, Yoshihiro [1 ]
Watanabe, Hiroto [1 ]
Mandai, Toshihiko [2 ]
Yagi, Shunsuke [3 ]
Oaki, Yuya [1 ]
Imai, Hiroaki [1 ]
机构
[1] Keio Univ, Fac Sci & Technol, Dept Appl Chem, Kohoku Ku, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan
[2] Natl Inst Mat Sci NIMS, Ctr Adv Battery Collaborat, Ctr Green Res Energy & Environm Mat, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[3] Univ Tokyo, Inst Ind Sci, Meguro Ku, 4-6-1 Komaba, Tokyo 1538505, Japan
关键词
Metal negative electrode battery; Positive electrode material; Complex polymerization; Propylene oxide; CATHODE MATERIALS; ELECTRICAL-PROPERTIES; CATALYTIC COMBUSTION; MANGANESE OXIDE; METAL ANODES; MAGNESIUM; ELECTROLYTES; DEPOSITION; CO; INTERCALATION;
D O I
10.1007/s10971-022-05891-0
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We prepared conductive mixtures of Cu1.5Mn1.5O4 and Mn3O4 spinels (CMO-MOs) as positive electrode active materials in rechargeable Mg batteries (RMBs) using a sol-gel complex polymerization method. The CMO-MO spinel mixtures with high specific surface areas above 100 m(2) g(-1) were obtained with mild calcination in Ar at 300 degrees C. The conductivity of CMO-MOs was estimated to be approximately 1000 times higher than that of a conventional MgMn2O4 (MMO) spinel powder. The discharge capacities evaluated using 2032-type coin-cell battery with a Mg-alloy negative electrode at room temperature increase with an increase in the specific surface area of the spinel powders. The specific surface area for providing the theoretical capacity of the conductive CMO-MOs was about one-third that of the insulative MMO. High specific surface area and high conductivity are key parameters for the positive active material to realize practical room-temperature operation of RMBs. [GRAPHICS] .
引用
收藏
页码:635 / 646
页数:12
相关论文
共 66 条
  • [1] Technologies Trend towards 5G Network for Smart Health-Care Using IoT: A Review
    Ahad, Abdul
    Tahir, Mohammad
    Aman Sheikh, Muhammad
    Ahmed, Kazi Istiaque
    Mughees, Amna
    Numani, Abdullah
    [J]. SENSORS, 2020, 20 (14) : 1 - 22
  • [2] An Overview on Anodes for Magnesium Batteries: Challenges towards a Promising Storage Solution for Renewables
    Bella, Federico
    De Luca, Stefano
    Fagiolari, Lucia
    Versaci, Daniele
    Amici, Julia
    Francia, Carlotta
    Bodoardo, Silvia
    [J]. NANOMATERIALS, 2021, 11 (03) : 1 - 29
  • [3] Structure and Electrical Properties of Mn-Cu-O Spinels
    Bobruk, M.
    Durczak, K.
    Dabek, J.
    Brylewski, T.
    [J]. JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2017, 26 (04) : 1598 - 1604
  • [4] DC electrical conductivity of nanocrystalline Mn3O4 synthesized through a novel sol-gel route
    Bose, Vipin C.
    Maniammal, K.
    Madhu, G.
    Veenas, C. L.
    Raj, A. S. Aiswarya
    Biju, V.
    [J]. INTERNATIONAL CONFERENCE ON MATERIALS SCIENCE AND TECHNOLOGY (ICMST 2012), 2015, 73
  • [5] Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges
    Canepa, Pieremanuele
    Gautam, Gopalakrishnan Sai
    Hannah, Daniel C.
    Malik, Rahul
    Liu, Miao
    Gallagher, Kevin G.
    Persson, Kristin A.
    Ceder, Gerbrand
    [J]. CHEMICAL REVIEWS, 2017, 117 (05) : 4287 - 4341
  • [6] Effects of Particle Size on Mg2+ Ion Intercalation into λ-MnO2 Cathode Materials
    Chen, Wenxiang
    Zhan, Xun
    Luo, Binbin
    Ou, Zihao
    Shih, Pei-Chieh
    Yao, Lehan
    Pidaparthy, Saran
    Patra, Arghya
    An, Hyosung
    Braun, Paul V.
    Stephens, Ryan M.
    Yang, Hong
    Zuo, Jian-Min
    Chen, Qian
    [J]. NANO LETTERS, 2019, 19 (07) : 4712 - 4720
  • [7] Li-Ion Batteries Parameter Estimation With Tiny Neural Networks Embedded on Intelligent IoT Microcontrollers
    Crocioni, Giulia
    Pau, Danilo
    Delorme, Jean-Michel
    Gruosso, Giambattista
    [J]. IEEE ACCESS, 2020, 8 (08): : 122135 - 122146
  • [8] Progress in development of electrolytes for magnesium batteries
    Deivanayagam, Ramasubramonian
    Ingram, Brian J.
    Shahbazian-Yassar, Reza
    [J]. ENERGY STORAGE MATERIALS, 2019, 21 : 136 - 153
  • [9] Evaluation of Mg[B(HFIP)4]2-Based Electrolyte Solutions for Rechargeable Mg Batteries
    Dlugatch, Ben
    Mohankumar, Meera
    Attias, Ran
    Krishna, Balasubramoniam Murali
    Elias, Yuval
    Gofer, Yosef
    Zitoun, David
    Aurbach, Doron
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (46) : 54884 - 54895
  • [10] A Simple Halogen-Free Magnesium Electrolyte for Reversible Magnesium Deposition through Cosolvent Assistance
    Fan, Shengqi
    Asselin, Genevieve M.
    Pan, Baofei
    Wang, Hao
    Ren, Yang
    Vaughey, John T.
    Sa, Niya
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (09) : 10252 - 10260