A Multi-Mode Modulator for Multi-Domain Few-Shot Classification

被引:21
作者
Liu, Yanbin [1 ,2 ]
Lee, Juho [3 ,4 ]
Zhu, Linchao [2 ]
Chen, Ling [2 ]
Shi, Humphrey [5 ,6 ]
Yang, Yi [2 ]
机构
[1] Baidu Res, Beijing, Peoples R China
[2] Univ Technol Sydney, AAII, Sydney, NSW, Australia
[3] Korea Adv Inst Sci & Technol, Daejeon, South Korea
[4] AITRICS, Seoul, South Korea
[5] Univ Oregon, Eugene, OR 97403 USA
[6] Picsart AI Res PAIR, Miami, FL USA
来源
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021) | 2021年
关键词
D O I
10.1109/ICCV48922.2021.00834
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most existing few-shot classification methods only consider generalization on one dataset (i.e., single-domain), failing to transfer across various seen and unseen domains. In this paper, we consider the more realistic multi-domain few-shot classification problem to investigate the cross-domain generalization. Two challenges exist in this new setting: (1) how to efficiently generate multi-domain feature representation, and (2) how to explore domain correlations for better cross-domain generalization. We propose a parameter-efficient multi-mode modulator to address both challenges. First, the modulator is designed to maintain multiple modulation parameters (one for each domain) in a single network, thus achieving single-network multi-domain representation. Given a particular domain, domain-aware features can be efficiently generated with the well-devised separative selection module and cooperative query module. Second, we further divide the modulation parameters into the domain-specific set and the domain-cooperative set to explore the intra-domain information and inter-domain correlations, respectively. The intra-domain information describes each domain independently to prevent negative interference. The inter-domain correlations guide information sharing among relevant domains to enrich their own representation. Moreover, unseen domains can utilize the correlations to obtain an adaptive combination of seen domains for extrapolation. We demonstrate that the proposed multi-mode modulator achieves state-of-the-art results on the challenging META-DATASET benchmark, especially for unseen test domains.
引用
收藏
页码:8433 / 8442
页数:10
相关论文
共 54 条
[1]  
[Anonymous], 6 IND C COMP VIS
[2]   Improved Few-Shot Visual Classification [J].
Bateni, Peyman ;
Goyal, Raghav ;
Masrani, Vaden ;
Wood, Frank ;
Sigal, Leonid .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :14481-14490
[3]  
Bateni Peyman, 2020, ARXIV200612245
[4]  
Bronskill J., 2020, P 37 INT C MACH LEAR, V119, P1153
[5]  
Chen Wei-Yu, 2018, P INT C LEARN REPR
[6]   Describing Textures in the Wild [J].
Cimpoi, Mircea ;
Maji, Subhransu ;
Kokkinos, Iasonas ;
Mohamed, Sammy ;
Vedaldi, Andrea .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :3606-3613
[7]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[8]  
Ding Yuhang, 2021, P AAAI C ART INT, P2021
[9]  
Doersch C., 2020, Adv. Neural Inf. Process. Syst., V33, P21981
[10]   Diversity with Cooperation: Ensemble Methods for Few-Shot Classification [J].
Dvornik, Nikita ;
Schmid, Cordelia ;
Mairal, Julien .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :3722-3730