An iterative approach for cone complementarity problems for nonsmooth dynamics

被引:99
|
作者
Anitescu, Mihai [1 ]
Tasora, Alessandro [2 ]
机构
[1] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA
[2] Univ Parma, Dipartimento Ingn Ind, I-43100 Parma, Italy
关键词
Iterative methods; Cone complementarity problems; LCP; Complementarity; Contacts; Multibody; BODY CONTACT PROBLEMS; STIFF MULTIBODY DYNAMICS; TIME-STEPPING METHOD; CONVERGENCE; SIMULATION; FRICTION; SYSTEMS; JOINTS;
D O I
10.1007/s10589-008-9223-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Aiming at a fast and robust simulation of large multibody systems with contacts and friction, this work presents a novel method for solving large cone complementarity problems by means of a fixed-point iteration. The method is an extension of the Gauss-Seidel and Gauss-Jacobi method with overrelaxation for symmetric convex linear complementarity problems. The method is proved to be convergent under fairly standard assumptions and is shown by our tests to scale well up to 500,000 contact points and more than two millions of unknowns.
引用
收藏
页码:207 / 235
页数:29
相关论文
共 50 条
  • [1] An iterative approach for cone complementarity problems for nonsmooth dynamics
    Mihai Anitescu
    Alessandro Tasora
    Computational Optimization and Applications, 2010, 47 : 207 - 235
  • [2] A matrix-free cone complementarity approach for solving large-scale, nonsmooth, rigid body dynamics
    Tasora, A.
    Anitescu, M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (5-8) : 439 - 453
  • [3] Solving variational inequalities and cone complementarity problems in nonsmooth dynamics using the alternating direction method of multipliers
    Tasora, Alessandro
    Mangoni, Dario
    Benatti, Simone
    Garziera, Rinaldo
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (16) : 4093 - 4113
  • [4] A second order cone complementarity approach for the numerical solution of elastoplasticity problems
    Zhang, L. L.
    Li, J. Y.
    Zhang, H. W.
    Pan, S. H.
    COMPUTATIONAL MECHANICS, 2013, 51 (01) : 1 - 18
  • [5] A PARALLEL ITERATIVE ALGORITHM FOR DIFFERENTIAL LINEAR COMPLEMENTARITY PROBLEMS
    Wu, Shu-Lin
    Chen, Xiaojun
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (06) : A3040 - A3066
  • [6] ITERATIVE METHODS WITH ANALYTICAL PRECONDITIONING TECHNIQUE TO LINEAR COMPLEMENTARITY PROBLEMS: APPLICATION TO OBSTACLE PROBLEMS
    Najafi, H. Saberi
    Edalatpanah, S. A.
    RAIRO-OPERATIONS RESEARCH, 2013, 47 (01) : 59 - 71
  • [7] A second order cone complementarity approach for the numerical solution of elastoplasticity problems
    L. L. Zhang
    J. Y. Li
    H. W. Zhang
    S. H. Pan
    Computational Mechanics, 2013, 51 : 1 - 18
  • [8] Modified Jacobian smoothing method for nonsmooth complementarity problems
    Chen, Pin-Bo
    Zhang, Peng
    Zhu, Xide
    Lin, Gui-Hua
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2020, 75 (01) : 207 - 235
  • [9] Modified Jacobian smoothing method for nonsmooth complementarity problems
    Pin-Bo Chen
    Peng Zhang
    Xide Zhu
    Gui-Hua Lin
    Computational Optimization and Applications, 2020, 75 : 207 - 235
  • [10] Smoothing penalty approach for solving second-order cone complementarity problems
    Nguyen, Chieu Thanh
    Alcantara, Jan Harold
    Hao, Zijun
    Chen, Jein-Shan
    JOURNAL OF GLOBAL OPTIMIZATION, 2025, 91 (01) : 39 - 58