Self-assembly of Fe2O3/reduced graphene oxide hydrogel for high Li-storage

被引:30
作者
Zhou, Weiwei [1 ]
Ding, Chunyan [1 ]
Jia, Xingtao [1 ]
Tian, Ye [1 ]
Guan, Qiaotian [1 ]
Wen, Guangwu [1 ]
机构
[1] Harbin Inst Technol, Sch Mat Sci & Engn, Weihai 264209, Peoples R China
关键词
Composites; Oxides; Chemical synthesis; Electrochemical properties; LITHIUM-ION BATTERIES; HIGH-PERFORMANCE ANODE; REDUCED GRAPHENE; NANOPARTICLES; CAPACITY; COMPOSITE; CARBON; NANOSTRUCTURES; FABRICATION; GROWTH;
D O I
10.1016/j.materresbull.2014.11.010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A novel three-dimensional (3D) Fe2O3/reduced graphene oxide (RGO) hydrogel (FGH) is prepared by a facile hydrothermal strategy. In this composite hydrogel, RGO sheets self-assemble into an interconnected macroporous framework and Fe2O3 nanotubes encapsulate into RGO layers. The FGH delivers high rate capacities of 850, 780, 550, and 400 mAh/g at current densities of 200, 400, 600, and 800 mA/g, respectively. The specific capacity can still maintain at similar to 600 mAh/g after 70 cycles, which greatly outperforms that of pure Fe2O3 nanotubes (similar to 60 mAh/g after 70 cycles). The improved electrochemical performance is ascribed to the unique macroscopic structure which is beneficial for enlarging the active surface area, shortening the electron/ion pathway, accommodating the volume change of Fe2O3 nanotubes, and preventing the aggregation of both Fe2O3 nanoparticles and RGO sheets. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:19 / 23
页数:5
相关论文
共 39 条
[1]   Graphene oxide/conducting polymer composite hydrogels [J].
Bai, Hua ;
Sheng, Kaixuan ;
Zhang, Pengfei ;
Li, Chun ;
Shi, Gaoquan .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (46) :18653-18658
[2]   Nanostructured Fe3O4/SWNT Electrode: Binder-Free and High-Rate Li-Ion Anode [J].
Ban, Chunmei ;
Wu, Zhuangchun ;
Gillaspie, Dane T. ;
Chen, Le ;
Yan, Yanfa ;
Blackburn, Jeffrey L. ;
Dillon, Anne C. .
ADVANCED MATERIALS, 2010, 22 (20) :E145-+
[3]   Size-controlled SnO2 hollow spheres via a template free approach as anodes for lithium ion batteries [J].
Bhaskar, Akkisetty ;
Deepa, Melepurath ;
Rao, Tata Narasinga .
NANOSCALE, 2014, 6 (18) :10762-10771
[4]   Graphene Hydrogels Deposited in Nickel Foams for High-Rate Electrochemical Capacitors [J].
Chen, Ji ;
Sheng, Kaixuan ;
Luo, Peihui ;
Li, Chun ;
Shi, Gaoquan .
ADVANCED MATERIALS, 2012, 24 (33) :4569-4573
[5]   Top-Down Fabrication of α-Fe2O3 Single-Crystal Nanodiscs and Microparticles with Tunable Porosity for Largely Improved Lithium Storage Properties [J].
Chen, Jun Song ;
Zhu, Ting ;
Yang, Xiao Hua ;
Yang, Hua Gui ;
Lou, Xiong Wen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (38) :13162-13164
[6]   Self-Assembly and Embedding of Nanoparticles by In Situ Reduced Graphene for Preparation of a 3D Graphene/Nanoparticle Aerogel [J].
Chen, Wufeng ;
Li, Sirong ;
Chen, Chunhua ;
Yan, Lifeng .
ADVANCED MATERIALS, 2011, 23 (47) :5679-+
[7]   Branched nanowires: Synthesis and energy applications [J].
Cheng, Chuanwei ;
Fan, Hong Jin .
NANO TODAY, 2012, 7 (04) :327-343
[8]   Carbon-enhanced electrodeposited SnO2/carbon nanofiber composites as anode for lithium-ion batteries [J].
Dirican, Mahmut ;
Yanilmaz, Meltem ;
Fu, Kun ;
Lu, Yao ;
Kizil, Huseyin ;
Zhang, Xiangwu .
JOURNAL OF POWER SOURCES, 2014, 264 :240-247
[9]   Graphene-Network-Backboned Architectures for High-Performance Lithium Storage [J].
Gong, Yongji ;
Yang, Shubin ;
Liu, Zheng ;
Ma, Lulu ;
Vajtai, Robert ;
Ajayan, Pulickel M. .
ADVANCED MATERIALS, 2013, 25 (29) :3979-3984
[10]   Particle size effects on the electrochemical performance of copper oxides toward lithium [J].
Grugeon, S ;
Laruelle, S ;
Herrera-Urbina, R ;
Dupont, L ;
Poizot, P ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (04) :A285-A292