Mathematical modeling and cascade design of hollow fiber membrane contactor for CO2 absorption by monoethanolamine

被引:59
|
作者
Boributh, Somnuk [1 ]
Rongwong, Wichitpan [1 ]
Assabumrungrat, Suttichai [2 ]
Laosiripojana, Navadol [3 ]
Jiraratananon, Ratana [1 ]
机构
[1] King Mongkuts Univ Technol Thonburi, Dept Chem Engn, Bangkok 10140, Thailand
[2] Chulalongkorn Univ, Dept Chem Engn, Fac Engn, Bangkok 10330, Thailand
[3] King Mongkuts Univ Technol Thonburi, Joint Grad Sch Energy & Environm, Bangkok 10140, Thailand
关键词
Carbon dioxide; Cascade design; Membrane contactor; Membrane wetting; MASS-TRANSFER; CARBON-DIOXIDE; GAS; RESISTANCE; REMOVAL;
D O I
10.1016/j.memsci.2012.01.048
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The absorption of CO2 from the gas mixture (CO2-CH4) by polyvinylidenefluoride (PVDF) hollow fiber membrane contactor using monoethanolamine (MEA) as the absorbent was performed. The mathematical model has been developed to predict the absorption performance. The model is validated with the experimental results for estimating the wetting ratio (x*) as the function of liquid velocity and MEA concentration. The suitable hollow fiber membrane module with effective fiber length of 50 cm is selected for the design of multistage membrane contactors. The absorption flux of multistage membrane contactor is simulated based on the value of x* obtained from the experiments. The three-stage cascade design is selected to compare the system performance with different gas and liquid flow patterns. The results of the simulation show that the individual gas flow (G-ID) gives higher performance compared to the gas flow in series (G-IS) for all operating conditions studied. The three different flow patterns of liquid including (i) liquid flow in series (L-IS), (ii) liquid flow in series with splitting (L-ISS) and (iii) liquid flow in series with recycle (L-ISR) are compared. At low MEA concentration (0.25 M), the L-ISR can improve the system performance at low liquid velocities, while L-ISS shows the highest performance at high liquid velocities. For the system with high MEA concentration (1.0 M), L-ISR can improve the performance at low to moderate liquid velocities, whereas L-ISS does not improve the system performance at any liquid velocity. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:175 / 189
页数:15
相关论文
共 50 条
  • [21] Experimental and Modeling Study of Trace CO2 Removal in a Hollow-Fiber Membrane Contactor, Using CO2-Loaded Monoethanolamine
    Wang, Zhen
    Fang, Mengxiang
    Yu, Hai
    Wei, Chiao-Chien
    Luo, Zhongyang
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (50) : 18059 - 18070
  • [22] Enhancing CO2 absorption efficiency using a novel PTFE hollow fiber membrane contactor at elevated pressure
    Wang, Fushan
    Kang, Guodong
    Liu, Dandan
    Li, Meng
    Cao, Yiming
    AICHE JOURNAL, 2018, 64 (06) : 2135 - 2145
  • [23] Effect of operating conditions on the physical and chemical CO2 absorption through the PVDF hollow fiber membrane contactor
    Mansourizadeh, A.
    Ismail, A. F.
    Matsuura, T.
    JOURNAL OF MEMBRANE SCIENCE, 2010, 353 (1-2) : 192 - 200
  • [24] Mathematical modeling for the simultaneous absorption of CO2 and H2S using MEA in hollow fiber membrane contactors
    Faiz, Rami
    Al-Marzouqi, M.
    JOURNAL OF MEMBRANE SCIENCE, 2009, 342 (1-2) : 269 - 278
  • [25] Mathematical modeling of the simultaneous absorption of carbon dioxide and hydrogen sulfide in a hollow fiber membrane contactor
    Keshavarz, P.
    Fathikalajahi, J.
    Ayatollahi, S.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2008, 63 (01) : 145 - 155
  • [26] CO2 absorption enhancement by water-based nanofluids of CNT and SiO2 using hollow-fiber membrane contactor
    Rezakazemi, Mashallah
    Darabi, Mohammad
    Soroush, Ebrahim
    Mesbah, Mohammad
    SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 210 : 920 - 926
  • [27] Analytical solutions for membrane wetting calculations based on log-normal and normal distribution functions for CO2 absorption by a hollow fiber membrane contactor
    Boributh, Somnuk
    Jiraratananon, Ratana
    Li, Kang
    JOURNAL OF MEMBRANE SCIENCE, 2013, 429 : 459 - 472
  • [28] Theoretical modeling of the mass transfer performance of CO2 absorption into DEAB solution in hollow fiber membrane contactor
    Cao, Fan
    Gao, Hongxia
    Ling, Hao
    Huang, Yangqiang
    Liang, Zhiwu
    JOURNAL OF MEMBRANE SCIENCE, 2020, 593
  • [29] CO2 absorption using benzylamine as absorbent and promoter in a hollow fiber membrane contactor: A numerical study
    Eskandari, Masoud
    Khaksar, Seyed Amir Nezam
    Keshavarz, Peyman
    JOURNAL OF CO2 UTILIZATION, 2022, 66
  • [30] CO2 capture by modified hollow fiber membrane contactor: Numerical study on membrane structure and membrane wettability
    Abdolahi-Mansoorkhani, Hamed
    Seddighi, Sadegh
    FUEL PROCESSING TECHNOLOGY, 2020, 209 (209)