Carbon Catabolite Repression in Filamentous Fungi

被引:155
作者
Adnan, Muhammad [1 ,2 ]
Zheng, Wenhui [1 ,2 ]
Islam, Waqar [1 ]
Arif, Muhammad [1 ]
Abubakar, Yakubu Saddeeq [1 ,2 ]
Wang, Zonghua [1 ,2 ]
Lu, Guodong [1 ,2 ]
机构
[1] Fujian Agr & Forestry Univ, State Key Lab Ecol Pest Control Fujian & Taiwan C, Fuzhou 350002, Fujian, Peoples R China
[2] Fujian Agr & Forestry Univ, Minist Educ, Key Lab Biopesticides & Chem Biol, Fuzhou 350002, Fujian, Peoples R China
基金
美国国家科学基金会;
关键词
carbon catabolite repression; sensing and signaling pathway; phosphorylation; hexokinase; transport proteins; cAMP; CreA; ubiquitination; PROTEIN-KINASE-A; GLUCOSE-TRANSPORTER GENES; PLANT BIOMASS DEGRADATION; ALPHA-AMYLASE PRODUCTION; CCAAT BINDING COMPLEX; ASPERGILLUS-NIDULANS; TRICHODERMA-REESEI; TRANSCRIPTIONAL ACTIVATOR; NEUROSPORA-CRASSA; SACCHAROMYCES-CEREVISIAE;
D O I
10.3390/ijms19010048
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Carbon Catabolite Repression (CCR) has fascinated scientists and researchers around the globe for the past few decades. This important mechanism allows preferential utilization of an energy-efficient and readily available carbon source over relatively less easily accessible carbon sources. This mechanism helps microorganisms to obtain maximum amount of glucose in order to keep pace with their metabolism. Microorganisms assimilate glucose and highly favorable sugars before switching to less-favored sources of carbon such as organic acids and alcohols. In CCR of filamentous fungi, CreA acts as a transcription factor, which is regulated to some extent by ubiquitination. CreD-HulA ubiquitination ligase complex helps in CreA ubiquitination, while CreB-CreC deubiquitination (DUB) complex removes ubiquitin from CreA, which causes its activation. CCR of fungi also involves some very crucial elements such as Hexokinases, cAMP, Protein Kinase (PKA), Ras proteins, G protein-coupled receptor (GPCR), Adenylate cyclase, RcoA and SnfA. Thorough study of molecular mechanism of CCR is important for understanding growth, conidiation, virulence and survival of filamentous fungi. This review is a comprehensive revision of the regulation of CCR in filamentous fungi as well as an updated summary of key regulators, regulation of different CCR-dependent mechanisms and its impact on various physical characteristics of filamentous fungi.
引用
收藏
页数:23
相关论文
共 209 条
[1]   Aspergillus Oxylipin Signaling and Quorum Sensing Pathways Depend on G Protein-Coupled Receptors [J].
Affeldt, Katharyn J. ;
Brodhagen, Marion ;
Keller, Nancy P. .
TOXINS, 2012, 4 (09) :695-717
[2]   The glucose-regulated nuclear localization of hexokinase 2 in Saccharomyces cerevisiae is Mig1-dependent [J].
Ahuatzi, D ;
Herrero, P ;
de la Cera, T ;
Moreno, F .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (14) :14440-14446
[3]   Hxk2 regulates the phosphorylation state of Mig1 and therefore its nucleocytoplasmic distribution [J].
Ahuatzi, Deifilia ;
Riera, Alberto ;
Pelaez, Rafael ;
Herrero, Pilar ;
Moreno, Fernando .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (07) :4485-4493
[4]   Proteins interacting with CreA and CreB in the carbon catabolite repression network in Aspergillus nidulans [J].
Alam, Md Ashiqul ;
Kelly, Joan M. .
CURRENT GENETICS, 2017, 63 (04) :669-683
[5]   The CreB deubiquitinating enzyme does not directly target the CreA repressor protein in Aspergillus nidulans [J].
Alam, Md Ashiqul ;
Kamlangdee, Niyom ;
Kelly, Joan M. .
CURRENT GENETICS, 2017, 63 (04) :647-667
[6]   Cryptococcus neoformans mating and virulence are regulated by the G-protein alpha subunit GPA1 and cAMP [J].
Alspaugh, JA ;
Perfect, JR ;
Heitman, J .
GENES & DEVELOPMENT, 1997, 11 (23) :3206-3217
[7]   Regulation of Cellulase and Hemicellulase Gene Expression in Fungi [J].
Amore, Antonella ;
Giacobbe, Simona ;
Faraco, Vincenza .
CURRENT GENOMICS, 2013, 14 (04) :230-249
[8]   Transcriptional regulation of plant cell wall degradation by filamentous fungi [J].
Aro, N ;
Pakula, T ;
Penttilä, M .
FEMS MICROBIOLOGY REVIEWS, 2005, 29 (04) :719-739
[9]   ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei [J].
Aro, N ;
Saloheimo, A ;
Ilmén, M ;
Penttilä, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (26) :24309-24314
[10]   Analysis of regulation of pentose utilisation in Aspergillus niger reveals evolutionary adaptations in Eurotiales [J].
Battaglia, E. ;
Visser, L. ;
Nijssen, A. ;
van Veluw, G. J. ;
Wosten, H. A. B. ;
de Vries, R. P. .
STUDIES IN MYCOLOGY, 2011, (69) :31-38