Toward Large-Scale Vulnerability Discovery using Machine Learning

被引:160
作者
Grieco, Gustavo [1 ]
Grinblat, Guillermo Luis [1 ]
Uzal, Lucas [1 ]
Rawat, Sanjay [2 ,4 ]
Feist, Josselin [3 ]
Mounier, Laurent [3 ]
机构
[1] CIFASIS CONICET, Rosario, Santa Fe, Argentina
[2] Vrije Univ Amsterdam, Syst Secur Grp, Amsterdam, Netherlands
[3] Univ Grenoble Alps, VERIMAG, Grenoble, France
[4] IIIT Hyderabad, Hyderabad, Telangana, India
来源
CODASPY'16: PROCEEDINGS OF THE SIXTH ACM CONFERENCE ON DATA AND APPLICATION SECURITY AND PRIVACY | 2016年
关键词
D O I
10.1145/2857705.2857720
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With sustained growth of software complexity, finding security vulnerabilities in operating systems has become an important necessity. Nowadays, OS are shipped with thousands of binary executables. Unfortunately, methodologies and tools for an OS scale program testing within a limited time budget are still missing. In this paper we present an approach that uses lightweight static and dynamic features to predict if a test case is likely to contain a software vulnerability using machine learning techniques. To show the effectiveness of our approach, we set up a large experiment to detect easily exploitable memory corruptions using 1039 Debian programs obtained from its bug tracker, collected 138,308 unique execution traces and statically explored 76,083 different subsequences of function calls. We managed to predict with reasonable accuracy which programs contained dangerous memory corruptions. We also developed and implemented VDiscovER, a tool that uses state-of-the-art Machine Learning techniques to predict vulnerabilities in test cases. Such tool will be released as open-source to encourage the research of vulnerability discovery at a large scale, together with VDISCOVERY, a public dataset that collects raw analyzed data.
引用
收藏
页码:85 / 96
页数:12
相关论文
共 44 条
[1]  
[Anonymous], IEEE SOFTWARE
[2]  
[Anonymous], SYSTEMS MAN CYBERN A
[3]  
[Anonymous], SIGPLAN NOT
[4]  
[Anonymous], P 6 INT C SOFTW SEC
[5]  
[Anonymous], ADV INTELLIGENT SYST
[6]  
[Anonymous], LECT NOTES COMPUTER
[7]  
[Anonymous], SOFTW MAINT ICSM 201
[8]  
[Anonymous], 2006, PATTERN RECOGN, DOI DOI 10.1117/1.2819119
[9]  
[Anonymous], SP 96
[10]  
[Anonymous], 2005, MORGAN KAUFMANN SERI