ON THE CONSTANTS IN A KATO INEQUALITY FOR THE EULER AND NAVIER-STOKES EQUATIONS

被引:8
作者
Morosi, Carlo [1 ]
Pizzocchero, Livio [2 ,3 ]
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
[3] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy
关键词
Navier-Stokes equations; inequalities; Sobolev spaces; PARTIAL-DIFFERENTIAL-EQUATIONS; RIGOROUS NUMERICS; LENGTH SCALES;
D O I
10.3934/cpaa.2012.11.557
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We continue an analysis, started in [10], of some issues related to the incompressible Euler or Navier-Stokes (NS) equations on a d-dimensional torus T-d. More specifically, we consider the quadratic term in these equations; this arises from the bilinear map (v, w) v center dot partial derivative w, where v, w : T-d -> R-d are two velocity fields. We derive upper and lower bounds for the constants in some inequalities related to the above bilinear map; these bounds hold, in particular, for the sharp constants G(nd) G(n) in the Kato inequality vertical bar < v center dot partial derivative w vertical bar w > n vertical bar <= G(n) parallel to v parallel to n parallel to w parallel to(2)(n), where n epsilon (d/2 + 1, +infinity) and v, w are in the Sobolev spaces H-Sigma 0(n),H-Sigma 0(n+1) of zero mean, divergence free vector fields of orders n and n + 1, respectively. As examples, the numerical values of our upper and lower bounds are reported for d = 3 and some values of n. When combined with the results of [10] on another inequality, the results of the present paper can be employed to set up fully quantitative error estimates for the approximate solutions of the Euler/NS equations, or to derive quantitative bounds on the time of existence of the exact solutions with specified initial data; a sketch of this program is given.
引用
收藏
页码:557 / 586
页数:30
相关论文
共 14 条
[1]   Convergence of the Adomian Decomposition Method for Initial-Value Problems [J].
Abdelrazec, Ahmed ;
Pelinovsky, Dmitry .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2011, 27 (04) :749-766
[2]  
Adams R. A., 1978, SOBOLEV SPACES
[3]  
Bartuccelli MV, 2004, COMMUN PUR APPL ANAL, V3, P25
[4]   A posteriori regularity of the three-dimensional Navier-Stokes equations from numerical computations [J].
Chernyshenko, Sergei I. ;
Constantin, Peter ;
Robinson, James C. ;
Titi, Edriss S. .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (06)
[5]  
Constantin P., 1988, Chicago Lectures in Mathematics
[6]  
Kato T., 1972, Journal of Functional Analysis, V9, P296, DOI 10.1016/0022-1236(72)90003-1
[7]   Length scales for the Navier-Stokes equations on a rotating sphere [J].
Kyrychko, YN ;
Bartuccelli, MV .
PHYSICS LETTERS A, 2004, 324 (2-3) :179-184
[8]  
MOROSI C, ARXIV10074412V2MATHA
[9]  
MOROSI C, ARXIV11043832V1MATHA
[10]   On approximate solutions of semilinear evolution equations II. Generalizations, and applications to Navier-Stokes equations [J].
Morosi, Carlo ;
Pizzocchero, Livio .
REVIEWS IN MATHEMATICAL PHYSICS, 2008, 20 (06) :625-706