Generalization of fixed point theorems in ordered metric spaces concerning generalized distance

被引:35
作者
Graily, Elham [1 ]
Vaezpour, Seiyed Mansour [2 ]
Saadati, Reza [1 ]
Cho, Yeol J. E. [3 ]
机构
[1] Islamic Azad Univ Iau, Dept Math, Sci & Res Branch, Tehran, Iran
[2] Amirkabir Univ Technol, Dept Math & Comp Sci, Tehran 15914, Iran
[3] Gyeongsang Natl Univ, Dept Math Educ & Rins, Chinju 660701, South Korea
关键词
Ordered metric space; Fixed point; Generalized distance; ORDINARY DIFFERENTIAL-EQUATIONS; CONTRACTIONS; EXISTENCE; SETS;
D O I
10.1186/1687-1812-2011-30
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider ordered metric spaces concerning generalized distance and prove some fixed point theorems in these spaces. Our results generalize, improve, and simplify the proof of the previous results given by some authors.
引用
收藏
页数:8
相关论文
共 15 条
[1]  
AC RAN, 2004, P AM MATH SOC, V132, P1435, DOI DOI 10.1090/S0002-9939-03-07220-4
[2]   Generalized contractions in partially ordered metric spaces [J].
Agarwal, Ravi P. ;
El-Gebeily, M. A. ;
O'Regan, Donal .
APPLICABLE ANALYSIS, 2008, 87 (01) :109-116
[3]   Fixed point theorems in partially ordered metric spaces and applications [J].
Bhaskar, T. Gnana ;
Lakshmikantham, V. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (07) :1379-1393
[4]  
Kada O., 1996, Math Japon, V44, P381
[5]   Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations [J].
Nieto, JJ ;
Rodríguez-López, R .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2005, 22 (03) :223-239
[6]   Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations [J].
Nieto, Juan J. ;
Rodriguez-Lopez, Rosana .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (12) :2205-2212
[7]   Fixed point theorems for generalized contractions in ordered metric spaces [J].
O'Regan, Donal ;
Petrusel, Adrian .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (02) :1241-1252
[8]  
Petrusel A, 2006, P AM MATH SOC, V134, P411
[9]  
Saadati R, 2010, FIXED POINT THEOR-RO, V11, P375
[10]   Contractive mappings, Kannan mappings and metric completeness [J].
Shioji, N ;
Suzuki, T ;
Takahashi, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (10) :3117-3124