Comparison of two different equations of state for application of carbon dioxide sequestration

被引:16
作者
Han, Weon Shik [3 ]
McPherson, Brian [1 ,2 ]
机构
[1] Univ Utah, Dept Civil & Environm Engn, Salt Lake City, UT 84112 USA
[2] Univ Utah, Energy & Geosci Inst, Salt Lake City, UT 84112 USA
[3] New Mexico Inst Min & Technol, Dept Earth & Environm Sci, Socorro, NM 87801 USA
关键词
carbon dioxide (CO2); sequestration; equation of state; caprock integrity; brine; multiphase flow;
D O I
10.1016/j.advwatres.2008.01.011
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
We suggest that different equations of state (EOS) algorithms can and frequently will provide very different predictions of CO2 migration following injection for sequestration. Rather than carry out an exhaustive examination of all EOS algorithms available, we elected to evaluate this general hypothesis by making detailed comparisons of simulation results of two very common EOS algorithms. We simulated and compared CO2 migration patterns using two fundamentally different EOS algorithms - Modified Redlich-Kwong EOS (MRKEOS) and Span and Wagner EOS (SWEOS). In general, the predictions of thermophysical properties for both algorithms are close, except for a contrast in the predicted fugacity coefficient of CO2, which subsequently propagates to a contrast in predicted solubility in water/brine. Typically, MRKEOS underestimates solubility of CO2 compared to both SWEOS and experimental solubility data. In simulations of CO2 migration, dissolution rates of separate-phase CO2 predicted from the two EOS algorithms were significantly different, even for small contrasts in predicted fluid properties from EOS algorithms, resulting in markedly different migration patterns. We also examined the potential disparities of simulating integrity of caprock using these two common EOS algorithms. To simplify the analysis and to isolate the roles of specific properties, we limited these simulations to one dimension. Simulation results from both EOS algorithms indicate that the distance that separate-phase CO2 migrates through an unfractured caprock varies linearly with the amount of injected CO2, logarithmically with permeability, and inversely with porosity. More general sensitivity analyses were conducted to investigate the roles of individual parameters with respect to various properties, including how brine density, viscosity, and CO2 solubility in brine, affect CO2 flow and transport. General results suggest that both brine density and CO2 solubility are critical factors. The combined results of this study suggest that choice of EOS algorithm is critical, because even small differences in predicted density and solubility can lead to dramatic differences in migration patterns and timing of different processes such as gravity segregation and caprock penetration. We only evaluated two EOS algorithms, but the resulting disparities were great enough that we conclude that other EOS algorithms will also produce variable results in predicted migration and related processes. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:877 / 890
页数:14
相关论文
共 35 条
[1]   Equations of state for basin geofluids: algorithm review and intercomparison for brines [J].
Adams, JJ ;
Bachu, S .
GEOFLUIDS, 2002, 2 (04) :257-271
[2]  
ANDERSEN G, 1992, P 17 WORKSH GEOTH RE, V17, P239
[3]  
ANGUS A, 1976, INT THERMODYNAMICS T
[4]  
[Anonymous], 994259 USGS WAT RES
[5]   SEISMIC PROPERTIES OF PORE FLUIDS [J].
BATZLE, M ;
WANG, ZJ .
GEOPHYSICS, 1992, 57 (11) :1396-1408
[6]  
COLE BS, 2000, THESIS NEW MEXICO I
[7]   Solubility of CO2 in water from -1.5 to 100°C and from 0.1 to 100 MPa:: evaluation of literature data and thermodynamic modelling [J].
Diamond, LW ;
Akinfiev, NN .
FLUID PHASE EQUILIBRIA, 2003, 208 (1-2) :265-290
[8]   Modeling supercritical carbon dioxide injection in heterogeneous porous media [J].
Doughty, C ;
Pruess, K .
VADOSE ZONE JOURNAL, 2004, 3 (03) :837-847
[9]   An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar [J].
Duan, ZH ;
Sun, R .
CHEMICAL GEOLOGY, 2003, 193 (3-4) :257-271
[10]  
ENNISKING J, 2003, SOC PET ENG J, P84344