Analysis of Linear Convergence of a (1+1)-ES with Augmented Lagrangian Constraint Handling

被引:2
|
作者
Atamna, Asma [1 ]
Auger, Anne [1 ]
Hansen, Nikolaus [1 ]
机构
[1] Univ Paris Saclay, LRI, Inria, Ctr Saclay Ile de France, St Aubin, France
关键词
Augmented Lagrangian; constrained optimization; evolution strategies; Markov chains;
D O I
10.1145/2908812.2908901
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We address the question of linear convergence of evolution strategies on constrained optimization problems. In particular, we analyze a (1 + 1)-ES with an augmented Lagrangian constraint handling approach on functions defined on a continuous domain, subject to a single linear inequality constraint. We identify a class of functions for which it is possible to construct a homogeneous Markov chain whose stability implies linear convergence. This class includes all functions such that the augmented Lagrangian of the problem, centered with respect to its value at the optimum and the corresponding Lagrange multiplier, is positive homogeneous of degree 2 (thus including convex quadratic functions as a particular case). The stability of the constructed Markov chain is empirically investigated on the sphere function and on a moderately ill-conditioned ellipsoid function.
引用
收藏
页码:213 / 220
页数:8
相关论文
共 50 条
  • [1] Towards an Augmented Lagrangian Constraint Handling Approach for the (1+1)-ES
    Arnold, Dirk V.
    Porter, Jeremy
    GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, : 249 - 256
  • [2] Augmented Lagrangian Constraint Handling for CMA-ES - Case of a Single Linear Constraint
    Atamna, Asma
    Auger, Anne
    Hansen, Nikolaus
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XIV, 2016, 9921 : 181 - 191
  • [3] On invariance and linear convergence of evolution strategies with augmented Lagrangian constraint handling
    Atamna, Asma
    Auger, Anne
    Hansen, Nikolaus
    THEORETICAL COMPUTER SCIENCE, 2020, 832 : 68 - 97
  • [4] Log-linear convergence and optimal bounds for the (1+1)-ES
    Jebalia, Mohamed
    Auger, Anne
    Liardet, Pierre
    ARTIFICIAL EVOLUTION, 2008, 4926 : 207 - +
  • [5] Log-Linear Convergence and Divergence of the Scale-Invariant (1+1)-ES in Noisy Environments
    Jebalia, Mohamed
    Auger, Anne
    Hansen, Nikolaus
    ALGORITHMICA, 2011, 59 (03) : 425 - 460
  • [6] Log-Linear Convergence and Divergence of the Scale-Invariant (1+1)-ES in Noisy Environments
    Mohamed Jebalia
    Anne Auger
    Nikolaus Hansen
    Algorithmica, 2011, 59 : 425 - 460
  • [7] Generalized Drift Analysis in Continuous Domain: Linear Convergence of (1+1)-ES on Strongly Convex Functions with Lipschitz Continuous Gradients
    Morinaga, Daiki
    Akimoto, Youhei
    FOGA'19: PROCEEDINGS OF THE 15TH ACM/SIGEVO CONFERENCE ON FOUNDATIONS OF GENETIC ALGORITHMS, 2019, : 13 - 24
  • [8] Convergence Rate of the (1+1)-ES on Locally Strongly Convex and Lipschitz Smooth Functions
    Morinaga, Daiki
    Fukuchi, Kazuto
    Sakuma, Jun
    Akimoto, Youhei
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024, 28 (02) : 501 - 515
  • [9] Backpropagation Learning with a (1+1) ES
    Parra, Jose
    Trujillo, Leonardo
    Melin, Patricia
    GECCO-2010 COMPANION PUBLICATION: PROCEEDINGS OF THE 12TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2010, : 2103 - 2104
  • [10] Theory of (1+1) ES on the RIDGE
    Agapie, Alexandru
    Solomon, Ovidiu
    Giuclea, Marius
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2022, 26 (03) : 501 - 511