End-member identification and spectral mixture analysis of CRISM hyperspectral data: A case study on southwest Melas Chasma, Mars

被引:33
|
作者
Liu, Yang [1 ,2 ]
Glotch, Timothy D. [1 ]
Scudder, Noel A. [1 ,3 ]
Kraner, Meredith L. [1 ,4 ]
Condus, Thomas [1 ]
Arvidson, Raymond E. [5 ]
Guinness, Edward A. [5 ]
Wolff, Michael J. [6 ]
Smith, Michael D. [7 ]
机构
[1] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA
[2] Southwest Res Inst, San Antonio, TX 78238 USA
[3] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA
[4] Univ Nevada, Nevada Geodet Lab, Reno, NV 89557 USA
[5] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA
[6] Space Sci Inst, Boulder, CO USA
[7] NASA Goddard Spaceflight Ctr, Greenbelt, MD USA
关键词
Mars; radiative transfer; spectral unmixing; mineral abundance; aqueous history; BIDIRECTIONAL REFLECTANCE SPECTROSCOPY; MINERAL ABUNDANCES; RADIATIVE-TRANSFER; OPTICAL-CONSTANTS; VALLES MARINERIS; MIXING MODELS; SULFATES; DEPOSITS; PHYLLOSILICATES; CONSTRAINTS;
D O I
10.1002/2016JE005028
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We present spectral unmixing results over the southwest Melas Chasma region, where a variety of hydrated minerals were identified. We use the Discrete Ordinate Radiative Transfer radiative transfer model to simultaneously model Mars atmospheric gases, aerosols, and surface scattering and retrieve the single-scattering albedos (SSAs) modeled by the Hapke bidirectional scattering function from Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) data. We employ a spectral unmixing algorithm to quantitatively analyze the mineral abundances by modeling the atmospherically corrected CRISM SSAs using a nonnegative least squares linear deconvolution algorithm. To build the spectral library used for spectral unmixing, we use the factor analysis and target transformation technique to recover spectral end-members within the CRISM scenes. We investigate several distinct geologic units, including an interbedded polyhydrated and monohydrated sulfate unit (interbedded unit 1) and an interbedded phyllosilicate-sulfate unit (interbedded unit 2). Our spectral unmixing results indicate that polyhydrated sulfates in the interbedded unit 1 have a much lower abundance (similar to 10%) than that of the surrounding unit (similar to 20%) and thus may have been partially dehydrated into kieserite to form the interbedded strata, supporting a two-staged precipitation-dehydration formation hypothesis. In the interbedded unit 2 phyllosilicates have an abundance of similar to 40% and are interbedded with similar to 20% sulfates. The results, in combination with thermodynamic calculations performed previously, suggest that the interbedded phyllosilicates and sulfates likely formed through coupled basalt weathering and evaporation. The methodology developed in this study provides a powerful tool to derive the mineral abundances, aiming to better constrain the formation processes of minerals and past aqueous environment on Mars.
引用
收藏
页码:2004 / 2036
页数:33
相关论文
empty
未找到相关数据