A Novel Multi-Perspective Benchmarking Framework for Selecting Image Dehazing Intelligent Algorithms Based on BWM and Group VIKOR Techniques

被引:65
作者
Abdulkareem, Karrar Hameed [1 ,2 ]
Arbaiy, Nureize [1 ]
Zaidan, A. A. [3 ]
Zaidan, B. B. [3 ]
Albahri, O. S. [3 ]
Alsalem, M. A. [4 ]
Salih, Mahmood M. [5 ]
机构
[1] Univ Pendidikan Sultan Idris, Dept Comp, Tanjong Malim, Perak, Malaysia
[2] Univ Tun Hussein Onn Malaysia, Fac Comp Sci & Informat Technol, Batu Pahat 86400, Johor, Malaysia
[3] Al Muthanna Univ, Coll Agr, Samawah 66001, Iraq
[4] Univ Mosul, Coll Adm & Econ, Mosul, Iraq
[5] Tikrit Univ, Dept Comp Sci, Comp Sci & Math Coll, Tikrit 34001, Iraq
关键词
Multi-criteria decision making; intelligent algorithm; image dehazing; benchmarking; BWM; VIKOR; FAST SINGLE-IMAGE; MULTICRITERIA ANALYSIS; QUALITY ASSESSMENT; TRACKING CHANNELS; HAZE; MCDM; OPTIMIZATION; METHODOLOGY; EFFICIENT; VIDEO;
D O I
10.1142/S0219622020500169
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The increasing demand for image dehazing-based applications has raised the value of efficient evaluation and benchmarking for image dehazing algorithms. Several perspectives, such as inhomogeneous foggy, homogenous foggy, and dark foggy scenes, have been considered in multicriteria evaluation. The benchmarking for the selection of the best image dehazing intelligent algorithm based on multi-criteria perspectives is a challenging task owing to (a) multiple evaluation criteria, (b) criteria importance, (c) data variation, (d) criteria conflict, and (e) criteria tradeoff. A generally accepted framework for benchmarking image dehazing performance is unavailable in the existing literature. This study proposes a novel multi-perspective (i.e., an inhomogeneous foggy scene, a homogenous foggy scene, and a dark foggy scene) benchmarking framework for the selection of the best image dehazing intelligent algorithm based on multi-criteria analysis. Experiments were conducted in three stages. First was an evaluation experiment with five algorithms as part of matrix data. Second was a crossover between image dehazing intelligent algorithms and a set of target evaluation criteria to obtain matrix data. Third was the ranking of the image dehazing intelligent algorithms through integrated best-worst and VIseKriterijumska Optimizacija I Kompromisno Resenje methods. Individual and group decision-making contexts were applied to demonstrate the efficiency of the proposed framework. The mean was used to objectively validate the ranks given by group decision-making contexts. Checklist and benchmarking scenarios were provided to compare the proposed framework with an existing benchmark study. The proposed framework achieved a significant result in terms of selecting the best image dehazing algorithm.
引用
收藏
页码:909 / 957
页数:49
相关论文
共 146 条
[1]   An evaluation and selection problems of OSS-LMS packages [J].
Abdullateef, Belal Najeh ;
Elias, Nur Fazidah ;
Mohamed, Hazura ;
Zaidan, A. A. ;
Zaidan, B. B. .
SPRINGERPLUS, 2016, 5 :1-35
[2]   ZBWM: The Z-number extension of Best Worst Method and its application for supplier development [J].
Aboutorab, Hamed ;
Saberi, Morteza ;
Asadabadi, Mehdi Rajabi ;
Hussain, Omar ;
Chang, Elizabeth .
EXPERT SYSTEMS WITH APPLICATIONS, 2018, 107 :115-125
[3]   Evaluation of the external forces affecting the sustainability of oil and gas supply chain using Best Worst Method [J].
Ahmad, Wan Nurul Karimah Wan ;
Rezaei, Jafar ;
Sadaghiani, Saman ;
Tavasszy, Lorant A. .
JOURNAL OF CLEANER PRODUCTION, 2017, 153 (01) :242-252
[4]  
Al-Safwani N., 2014, J APPL SCI, V14, P1865, DOI [DOI 10.3923/jas.2014.1865.1870, 10.3923/jas.2014.1865.1870]
[5]   Assessment and Ranking Framework for the English Skills of Pre-Service Teachers Based on Fuzzy Delphi and TOPSIS Methods [J].
Alaa, Musaab ;
Albakri, Intan Safinas Mohd Ariff ;
Singh, Charanjit Kaur Swaran ;
Hammed, Hamsa ;
Zaidan, A. A. ;
Zaidan, B. B. ;
Albahri, O. S. ;
Alsalem, M. A. ;
Salih, Mahmood Maher ;
Almahdi, E. M. ;
Baqer, M. J. ;
Jalood, N. S. ;
Nidhal, Shahad ;
Shareef, Ali H. ;
Jasim, Ali Najm .
IEEE ACCESS, 2019, 7 :126201-126223
[6]   Real-time framework for image dehazing based on linear transmission and constant-time airlight estimation [J].
Alajarmeh, A. ;
Salam, R. A. ;
Abdulrahim, K. ;
Marhusin, M. F. ;
Zaidan, A. A. ;
Zaidan, B. B. .
INFORMATION SCIENCES, 2018, 436 :108-130
[7]   Based Multiple Heterogeneous Wearable Sensors: A Smart Real-Time Health Monitoring Structured for Hospitals Distributor [J].
Albahri, A. S. ;
Albahri, O. S. ;
Zaidan, A. A. ;
Zaidan, B. B. ;
Hashim, M. ;
Alsalem, M. A. ;
Mohsin, A. H. ;
Mohammed, K., I ;
Alamoodi, A. H. ;
Enaizan, Odai ;
Nidhal, Shahad ;
Zughoul, Omar ;
Momani, Fayiz ;
Chyad, M. A. ;
Abdulkareem, Karrar Hameed ;
Dawood, Kareem Abbas ;
Almahdi, E. M. ;
Al Shafeey, Ghailan A. ;
Baqer, M. J. .
IEEE ACCESS, 2019, 7 :37269-37323
[8]   Real-Time Fault-Tolerant mHealth System: Comprehensive Review of Healthcare Services, Opens Issues, Challenges and Methodological Aspects [J].
Albahri, A. S. ;
Zaidan, A. A. ;
Albahri, O. S. ;
Zaidan, B. B. ;
Alsalem, M. A. .
JOURNAL OF MEDICAL SYSTEMS, 2018, 42 (08)
[9]   Fault-Tolerant mHealth Framework in the Context of IoT-Based Real-Time Wearable Health Data Sensors [J].
Albahri, O. S. ;
Albahri, A. S. ;
Zaidan, A. A. ;
Zaidan, B. B. ;
Alsalem, M. A. ;
Mohsin, A. H. ;
Mohammed, K., I ;
Alamoodi, A. H. ;
Nidhal, Shahad ;
Enaizan, Odai ;
Chyad, M. A. ;
Abdulkareem, Karrar Hameed ;
Almahdi, E. M. ;
Al Shafeey, Ghailan A. ;
Baqer, M. J. ;
Jasim, Ali Najm ;
Jalood, N. S. ;
Shareef, Ali H. .
IEEE ACCESS, 2019, 7 :50052-50080
[10]   Real-Time Remote Health-Monitoring Systems in a Medical Centre: A Review of the Provision of Healthcare Services-Based Body Sensor Information, Open Challenges and Methodological Aspects [J].
Albahri, O. S. ;
Zaidan, A. A. ;
Zaidan, B. B. ;
Hashim, M. ;
Albahri, A. S. ;
Alsalem, M. A. .
JOURNAL OF MEDICAL SYSTEMS, 2018, 42 (09)